Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1605

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,0,2,2,0,0,1,1,1,-1,-1,-1,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1605']
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971']
Outer characteristic polynomial of the knot is: t^7+24t^5+60t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1605']
2-strand cable arrow polynomial of the knot is: -192*K1**6 + 480*K1**4*K2 - 3696*K1**4 + 64*K1**3*K2*K3 - 384*K1**3*K3 + 224*K1**2*K2**3 - 3936*K1**2*K2**2 - 96*K1**2*K2*K4 + 8032*K1**2*K2 - 1008*K1**2*K3**2 - 4044*K1**2 - 416*K1*K2**2*K3 + 5440*K1*K2*K3 + 1288*K1*K3*K4 - 248*K2**4 + 360*K2**2*K4 - 3472*K2**2 - 1756*K3**2 - 418*K4**2 + 3776
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1605']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4199', 'vk6.4279', 'vk6.5457', 'vk6.5570', 'vk6.7566', 'vk6.7655', 'vk6.9071', 'vk6.9151', 'vk6.11166', 'vk6.12252', 'vk6.12361', 'vk6.19376', 'vk6.19671', 'vk6.19783', 'vk6.26160', 'vk6.26220', 'vk6.26578', 'vk6.26665', 'vk6.30756', 'vk6.31961', 'vk6.38164', 'vk6.38204', 'vk6.44825', 'vk6.44949', 'vk6.48521', 'vk6.49219', 'vk6.49328', 'vk6.50311', 'vk6.52753', 'vk6.63588', 'vk6.66328', 'vk6.66344']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2O4U1U3O5U4O6U5U6
R3 orbit {'O1O2O3U2O4U1U3O5U4O6U5U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5O4U6O5U1U3O6U2
Gauss code of K* O1O2U3O4U5O3O5U1U6U2O6U4
Gauss code of -K* O1O2U1O3U2O4O5U3O6U4U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 1 1 0 1],[ 2 0 0 2 2 1 0],[ 1 0 0 1 1 0 0],[-1 -2 -1 0 1 1 0],[-1 -2 -1 -1 0 1 1],[ 0 -1 0 -1 -1 0 1],[-1 0 0 0 -1 -1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 0 1 -1 -2],[-1 -1 0 1 1 -1 -2],[-1 0 -1 0 -1 0 0],[ 0 -1 -1 1 0 0 -1],[ 1 1 1 0 0 0 0],[ 2 2 2 0 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,0,-1,1,2,-1,-1,1,2,1,0,0,0,1,0]
Phi over symmetry [-2,-1,0,1,1,1,0,1,0,2,2,0,0,1,1,1,-1,-1,-1,0,-1]
Phi of -K [-2,-1,0,1,1,1,1,1,1,1,3,1,1,1,2,2,2,0,-1,0,-1]
Phi of K* [-1,-1,-1,0,1,2,-1,0,0,2,3,-1,2,1,1,2,1,1,1,1,1]
Phi of -K* [-2,-1,0,1,1,1,0,1,0,2,2,0,0,1,1,1,-1,-1,-1,0,-1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 3z^2+24z+37
Enhanced Jones-Krushkal polynomial 3w^3z^2+24w^2z+37w
Inner characteristic polynomial t^6+16t^4+15t^2+1
Outer characteristic polynomial t^7+24t^5+60t^3+7t
Flat arrow polynomial -6*K1**2 + 3*K2 + 4
2-strand cable arrow polynomial -192*K1**6 + 480*K1**4*K2 - 3696*K1**4 + 64*K1**3*K2*K3 - 384*K1**3*K3 + 224*K1**2*K2**3 - 3936*K1**2*K2**2 - 96*K1**2*K2*K4 + 8032*K1**2*K2 - 1008*K1**2*K3**2 - 4044*K1**2 - 416*K1*K2**2*K3 + 5440*K1*K2*K3 + 1288*K1*K3*K4 - 248*K2**4 + 360*K2**2*K4 - 3472*K2**2 - 1756*K3**2 - 418*K4**2 + 3776
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{5, 6}, {2, 4}, {1, 3}]]
If K is slice False
Contact