Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1608

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,2,3,1,0,1,1,1,1,2,0,-1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1608']
Arrow polynomial of the knot is: -2*K1**2 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.6', '4.8', '6.780', '6.804', '6.914', '6.931', '6.946', '6.960', '6.1002', '6.1016', '6.1019', '6.1051', '6.1058', '6.1078', '6.1102', '6.1115', '6.1217', '6.1294', '6.1306', '6.1317', '6.1321', '6.1324', '6.1336', '6.1377', '6.1416', '6.1420', '6.1427', '6.1429', '6.1434', '6.1436', '6.1437', '6.1439', '6.1441', '6.1444', '6.1450', '6.1451', '6.1458', '6.1459', '6.1477', '6.1482', '6.1490', '6.1503', '6.1504', '6.1511', '6.1521', '6.1547', '6.1560', '6.1561', '6.1562', '6.1597', '6.1598', '6.1600', '6.1601', '6.1608', '6.1620', '6.1622', '6.1624', '6.1634', '6.1635', '6.1637', '6.1638', '6.1713', '6.1725', '6.1758', '6.1846', '6.1933', '6.1944', '6.1949', '6.1950', '6.1951']
Outer characteristic polynomial of the knot is: t^7+34t^5+42t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1608', '7.38019']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 928*K1**4*K2 - 3184*K1**4 + 32*K1**3*K2*K3 - 672*K1**3*K3 + 96*K1**2*K2**3 - 1696*K1**2*K2**2 - 224*K1**2*K2*K4 + 5840*K1**2*K2 - 16*K1**2*K3**2 - 2732*K1**2 + 2144*K1*K2*K3 + 112*K1*K3*K4 - 72*K2**4 + 136*K2**2*K4 - 2296*K2**2 - 564*K3**2 - 62*K4**2 + 2292
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1608']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11537', 'vk6.11869', 'vk6.12884', 'vk6.13192', 'vk6.20344', 'vk6.21687', 'vk6.27644', 'vk6.29190', 'vk6.31319', 'vk6.31716', 'vk6.32473', 'vk6.32890', 'vk6.39074', 'vk6.41332', 'vk6.45826', 'vk6.47497', 'vk6.52311', 'vk6.52573', 'vk6.53151', 'vk6.53454', 'vk6.57215', 'vk6.58438', 'vk6.61825', 'vk6.62958', 'vk6.63819', 'vk6.63952', 'vk6.64262', 'vk6.64459', 'vk6.66824', 'vk6.67694', 'vk6.69460', 'vk6.70184']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2O4U1U5O6U4O5U3U6
R3 orbit {'O1O2O3U2O4U1U5O6U4O5U3U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U1O5U6O4U5U3O6U2
Gauss code of K* O1O2U3O4U2O5O3U1U6U5O6U4
Gauss code of -K* O1O2U3O4U1O3O5U4O6U2U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 1 1 0 1],[ 2 0 0 3 1 1 2],[ 1 0 0 1 0 1 1],[-1 -3 -1 0 1 -2 1],[-1 -1 0 -1 0 -1 0],[ 0 -1 -1 2 1 0 1],[-1 -2 -1 -1 0 -1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 1 -2 -1 -3],[-1 -1 0 0 -1 0 -1],[-1 -1 0 0 -1 -1 -2],[ 0 2 1 1 0 -1 -1],[ 1 1 0 1 1 0 0],[ 2 3 1 2 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,-1,2,1,3,0,1,0,1,1,1,2,1,1,0]
Phi over symmetry [-2,-1,0,1,1,1,0,1,1,2,3,1,0,1,1,1,1,2,0,-1,-1]
Phi of -K [-2,-1,0,1,1,1,1,1,0,1,2,0,1,1,2,-1,0,0,-1,-1,0]
Phi of K* [-1,-1,-1,0,1,2,-1,0,0,1,1,1,-1,1,0,0,2,2,0,1,1]
Phi of -K* [-2,-1,0,1,1,1,0,1,1,2,3,1,0,1,1,1,1,2,0,-1,-1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 4z^2+23z+31
Enhanced Jones-Krushkal polynomial 4w^3z^2+23w^2z+31w
Inner characteristic polynomial t^6+26t^4+21t^2
Outer characteristic polynomial t^7+34t^5+42t^3+5t
Flat arrow polynomial -2*K1**2 + K2 + 2
2-strand cable arrow polynomial -64*K1**6 + 928*K1**4*K2 - 3184*K1**4 + 32*K1**3*K2*K3 - 672*K1**3*K3 + 96*K1**2*K2**3 - 1696*K1**2*K2**2 - 224*K1**2*K2*K4 + 5840*K1**2*K2 - 16*K1**2*K3**2 - 2732*K1**2 + 2144*K1*K2*K3 + 112*K1*K3*K4 - 72*K2**4 + 136*K2**2*K4 - 2296*K2**2 - 564*K3**2 - 62*K4**2 + 2292
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{3, 6}, {1, 5}, {2, 4}], [{5, 6}, {2, 4}, {1, 3}]]
If K is slice False
Contact