Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.161

Min(phi) over symmetries of the knot is: [-4,-2,-1,2,2,3,0,2,2,3,4,1,1,2,2,1,2,2,0,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.161']
Arrow polynomial of the knot is: -2*K1*K2 - 2*K1*K3 + K1 + K2 + K3 + K4 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.58', '6.76', '6.78', '6.90', '6.98', '6.154', '6.161', '6.162', '6.198', '6.280', '6.284', '6.345', '6.417', '6.421', '6.435', '6.511']
Outer characteristic polynomial of the knot is: t^7+113t^5+65t^3+3t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.161']
2-strand cable arrow polynomial of the knot is: -144*K1**4 - 416*K1**3*K3 - 64*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 224*K1**2*K2*K4 + 2000*K1**2*K2 - 176*K1**2*K3**2 - 80*K1**2*K4**2 - 2524*K1**2 - 384*K1*K2**2*K3 - 64*K1*K2*K3*K4 + 2120*K1*K2*K3 - 32*K1*K2*K4*K5 + 912*K1*K3*K4 + 152*K1*K4*K5 + 56*K1*K5*K6 - 32*K2**4 - 32*K2**3*K6 - 144*K2**2*K3**2 - 8*K2**2*K4**2 + 608*K2**2*K4 - 8*K2**2*K6**2 - 1970*K2**2 + 264*K2*K3*K5 + 96*K2*K4*K6 + 16*K2*K5*K7 + 8*K2*K6*K8 + 24*K3**2*K6 - 1148*K3**2 - 594*K4**2 - 168*K5**2 - 70*K6**2 - 8*K7**2 - 2*K8**2 + 2002
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.161']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73332', 'vk6.73344', 'vk6.73493', 'vk6.73505', 'vk6.75252', 'vk6.75268', 'vk6.75500', 'vk6.75512', 'vk6.78216', 'vk6.78228', 'vk6.78454', 'vk6.78470', 'vk6.80040', 'vk6.80052', 'vk6.80188', 'vk6.80200', 'vk6.81587', 'vk6.81669', 'vk6.81673', 'vk6.82098', 'vk6.82191', 'vk6.82271', 'vk6.82277', 'vk6.82667', 'vk6.82669', 'vk6.84159', 'vk6.84652', 'vk6.84734', 'vk6.84737', 'vk6.84966', 'vk6.84969', 'vk6.85749', 'vk6.85957', 'vk6.85964', 'vk6.87329', 'vk6.87689', 'vk6.88127', 'vk6.89719', 'vk6.90040', 'vk6.90082']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U1O6U4U2U5U6U3
R3 orbit {'O1O2O3O4O5U1U3O6U2U5U4U6', 'O1O2O3O4O5U1O6U4U2U5U6U3'}
R3 orbit length 2
Gauss code of -K O1O2O3O4O5U3U6U1U4U2O6U5
Gauss code of K* O1O2O3O4O5U6U2U5U1U3O6U4
Gauss code of -K* O1O2O3O4O5U2O6U3U5U1U4U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -4 -2 2 -1 2 3],[ 4 0 2 4 1 3 3],[ 2 -2 0 3 0 2 3],[-2 -4 -3 0 -2 0 2],[ 1 -1 0 2 0 1 2],[-2 -3 -2 0 -1 0 1],[-3 -3 -3 -2 -2 -1 0]]
Primitive based matrix [[ 0 3 2 2 -1 -2 -4],[-3 0 -1 -2 -2 -3 -3],[-2 1 0 0 -1 -2 -3],[-2 2 0 0 -2 -3 -4],[ 1 2 1 2 0 0 -1],[ 2 3 2 3 0 0 -2],[ 4 3 3 4 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,-2,1,2,4,1,2,2,3,3,0,1,2,3,2,3,4,0,1,2]
Phi over symmetry [-4,-2,-1,2,2,3,0,2,2,3,4,1,1,2,2,1,2,2,0,-1,0]
Phi of -K [-4,-2,-1,2,2,3,0,2,2,3,4,1,1,2,2,1,2,2,0,-1,0]
Phi of K* [-3,-2,-2,1,2,4,-1,0,2,2,4,0,1,1,2,2,2,3,1,2,0]
Phi of -K* [-4,-2,-1,2,2,3,2,1,3,4,3,0,2,3,3,1,2,2,0,1,2]
Symmetry type of based matrix c
u-polynomial t^4-t^3-t^2+t
Normalized Jones-Krushkal polynomial 3z^2+16z+21
Enhanced Jones-Krushkal polynomial 3w^3z^2+16w^2z+21w
Inner characteristic polynomial t^6+75t^4+20t^2
Outer characteristic polynomial t^7+113t^5+65t^3+3t
Flat arrow polynomial -2*K1*K2 - 2*K1*K3 + K1 + K2 + K3 + K4 + 1
2-strand cable arrow polynomial -144*K1**4 - 416*K1**3*K3 - 64*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 224*K1**2*K2*K4 + 2000*K1**2*K2 - 176*K1**2*K3**2 - 80*K1**2*K4**2 - 2524*K1**2 - 384*K1*K2**2*K3 - 64*K1*K2*K3*K4 + 2120*K1*K2*K3 - 32*K1*K2*K4*K5 + 912*K1*K3*K4 + 152*K1*K4*K5 + 56*K1*K5*K6 - 32*K2**4 - 32*K2**3*K6 - 144*K2**2*K3**2 - 8*K2**2*K4**2 + 608*K2**2*K4 - 8*K2**2*K6**2 - 1970*K2**2 + 264*K2*K3*K5 + 96*K2*K4*K6 + 16*K2*K5*K7 + 8*K2*K6*K8 + 24*K3**2*K6 - 1148*K3**2 - 594*K4**2 - 168*K5**2 - 70*K6**2 - 8*K7**2 - 2*K8**2 + 2002
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {3}, {1, 2}]]
If K is slice False
Contact