Gauss code |
O1O2O3U2O4U5U6O5U3O6U1U4 |
R3 orbit |
{'O1O2O3U2O4U5U6O5U3O6U1U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U3O5U1O6U5U6O4U2 |
Gauss code of K* |
O1O2U1O3U2O4O5U4U6U3O6U5 |
Gauss code of -K* |
O1O2U3O4U5O3O5U1O6U4U6U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -1 1 2 -1 0],[ 1 0 -1 2 2 0 1],[ 1 1 0 1 1 1 0],[-1 -2 -1 0 0 -1 0],[-2 -2 -1 0 0 -3 -1],[ 1 0 -1 1 3 0 0],[ 0 -1 0 0 1 0 0]] |
Primitive based matrix |
[[ 0 2 1 0 -1 -1 -1],[-2 0 0 -1 -1 -2 -3],[-1 0 0 0 -1 -2 -1],[ 0 1 0 0 0 -1 0],[ 1 1 1 0 0 1 1],[ 1 2 2 1 -1 0 0],[ 1 3 1 0 -1 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,1,1,1,0,1,1,2,3,0,1,2,1,0,1,0,-1,-1,0] |
Phi over symmetry |
[-2,-1,0,1,1,1,0,1,1,2,3,0,1,2,1,0,1,0,-1,-1,0] |
Phi of -K |
[-1,-1,-1,0,1,2,-1,-1,1,1,2,0,0,0,1,1,1,0,1,1,1] |
Phi of K* |
[-2,-1,0,1,1,1,1,1,0,1,2,1,1,0,1,1,0,1,0,-1,-1] |
Phi of -K* |
[-1,-1,-1,0,1,2,-1,0,0,1,3,1,0,1,1,1,2,2,0,1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^2+2t |
Normalized Jones-Krushkal polynomial |
17z+35 |
Enhanced Jones-Krushkal polynomial |
17w^2z+35w |
Inner characteristic polynomial |
t^6+24t^4+45t^2+9 |
Outer characteristic polynomial |
t^7+32t^5+62t^3+13t |
Flat arrow polynomial |
-10*K1**2 + 5*K2 + 6 |
2-strand cable arrow polynomial |
-384*K1**6 - 192*K1**4*K2**2 + 1536*K1**4*K2 - 4720*K1**4 + 256*K1**3*K2*K3 - 960*K1**3*K3 - 2752*K1**2*K2**2 - 96*K1**2*K2*K4 + 7600*K1**2*K2 - 176*K1**2*K3**2 - 2432*K1**2 + 2784*K1*K2*K3 + 160*K1*K3*K4 - 104*K2**4 + 72*K2**2*K4 - 2448*K2**2 - 624*K3**2 - 42*K4**2 + 2520 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {5}, {1, 4}, {2, 3}]] |
If K is slice |
False |