Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1615

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,1,2,1,1,1,1,0,0,0,0,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1615', '6.1849']
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971']
Outer characteristic polynomial of the knot is: t^7+20t^5+20t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1615', '6.1849']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 928*K1**4*K2 - 3952*K1**4 + 64*K1**3*K2*K3 - 1184*K1**3*K3 + 96*K1**2*K2**3 - 1920*K1**2*K2**2 - 288*K1**2*K2*K4 + 6688*K1**2*K2 - 304*K1**2*K3**2 - 2764*K1**2 + 3152*K1*K2*K3 + 424*K1*K3*K4 - 120*K2**4 + 168*K2**2*K4 - 2432*K2**2 - 876*K3**2 - 138*K4**2 + 2520
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1615']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11522', 'vk6.11854', 'vk6.12871', 'vk6.13179', 'vk6.20359', 'vk6.21700', 'vk6.27663', 'vk6.29207', 'vk6.31290', 'vk6.31685', 'vk6.32448', 'vk6.32863', 'vk6.39101', 'vk6.41355', 'vk6.45857', 'vk6.47518', 'vk6.52306', 'vk6.52570', 'vk6.53150', 'vk6.53453', 'vk6.57218', 'vk6.58439', 'vk6.61832', 'vk6.62963', 'vk6.63808', 'vk6.63941', 'vk6.64253', 'vk6.64450', 'vk6.66831', 'vk6.67699', 'vk6.69471', 'vk6.70193']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2O4U5U3O6U1O5U6U4
R3 orbit {'O1O2O3U2O4U5U3O6U1O5U6U4'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5O6U3O5U1U6O4U2
Gauss code of K* O1O2U3O4U1O3O5U4U6U2O6U5
Gauss code of -K* O1O2U3O4U2O5O3U1O6U5U6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 1 2 -1 0],[ 1 0 -1 1 2 0 0],[ 1 1 0 1 1 0 0],[-1 -1 -1 0 0 -1 -1],[-2 -2 -1 0 0 -1 -1],[ 1 0 0 1 1 0 0],[ 0 0 0 1 1 0 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 0 -1 -1 -1 -2],[-1 0 0 -1 -1 -1 -1],[ 0 1 1 0 0 0 0],[ 1 1 1 0 0 0 1],[ 1 1 1 0 0 0 0],[ 1 2 1 0 -1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,0,1,1,1,2,1,1,1,1,0,0,0,0,-1,0]
Phi over symmetry [-2,-1,0,1,1,1,0,1,1,1,2,1,1,1,1,0,0,0,0,-1,0]
Phi of -K [-1,-1,-1,0,1,2,-1,0,1,1,2,0,1,1,1,1,1,2,0,1,1]
Phi of K* [-2,-1,0,1,1,1,1,1,1,2,2,0,1,1,1,1,1,1,-1,0,0]
Phi of -K* [-1,-1,-1,0,1,2,-1,0,0,1,2,0,0,1,1,0,1,1,1,1,0]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 2z^2+19z+31
Enhanced Jones-Krushkal polynomial 2w^3z^2+19w^2z+31w
Inner characteristic polynomial t^6+12t^4+7t^2
Outer characteristic polynomial t^7+20t^5+20t^3+4t
Flat arrow polynomial -6*K1**2 + 3*K2 + 4
2-strand cable arrow polynomial -64*K1**6 + 928*K1**4*K2 - 3952*K1**4 + 64*K1**3*K2*K3 - 1184*K1**3*K3 + 96*K1**2*K2**3 - 1920*K1**2*K2**2 - 288*K1**2*K2*K4 + 6688*K1**2*K2 - 304*K1**2*K3**2 - 2764*K1**2 + 3152*K1*K2*K3 + 424*K1*K3*K4 - 120*K2**4 + 168*K2**2*K4 - 2432*K2**2 - 876*K3**2 - 138*K4**2 + 2520
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {5}, {2, 4}, {1}]]
If K is slice False
Contact