Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1625

Min(phi) over symmetries of the knot is: [-2,0,0,1,1,0,0,1,2,-1,0,0,0,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1625', '7.38650']
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971']
Outer characteristic polynomial of the knot is: t^6+13t^4+13t^2+1
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1625', '7.38650']
2-strand cable arrow polynomial of the knot is: 288*K1**4*K2 - 7600*K1**4 - 192*K1**3*K3 - 2432*K1**2*K2**2 + 10944*K1**2*K2 - 16*K1**2*K3**2 - 2920*K1**2 - 32*K1*K2**2*K3 + 2608*K1*K2*K3 + 40*K1*K3*K4 - 88*K2**4 + 96*K2**2*K4 - 3648*K2**2 - 688*K3**2 - 34*K4**2 + 3672
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1625']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73303', 'vk6.73305', 'vk6.73446', 'vk6.73448', 'vk6.74091', 'vk6.74095', 'vk6.74660', 'vk6.74664', 'vk6.75448', 'vk6.75450', 'vk6.76129', 'vk6.76133', 'vk6.78176', 'vk6.78178', 'vk6.78408', 'vk6.78410', 'vk6.79097', 'vk6.79101', 'vk6.79999', 'vk6.80001', 'vk6.80152', 'vk6.80154', 'vk6.80605', 'vk6.80609', 'vk6.83802', 'vk6.83818', 'vk6.85120', 'vk6.85123', 'vk6.86592', 'vk6.86623', 'vk6.87401', 'vk6.87403']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U3U1O6U2O4U6U5
R3 orbit {'O1O2O3U4O5U3U1O6U2O4U6U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5O6U2O5U3U1O4U6
Gauss code of K* O1O2U3O4U5O3O6U2U4U1O5U6
Gauss code of -K* O1O2U3O4U2O5O6U1O3U6U4U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 0 -1 2 0],[ 1 0 1 0 -1 2 0],[ 0 -1 0 0 -1 2 0],[ 0 0 0 0 0 0 -1],[ 1 1 1 0 0 1 0],[-2 -2 -2 0 -1 0 0],[ 0 0 0 1 0 0 0]]
Primitive based matrix [[ 0 2 0 0 -1 -1],[-2 0 0 0 -1 -2],[ 0 0 0 1 0 0],[ 0 0 -1 0 0 0],[ 1 1 0 0 0 1],[ 1 2 0 0 -1 0]]
If based matrix primitive False
Phi of primitive based matrix [-2,0,0,1,1,0,0,1,2,-1,0,0,0,0,-1]
Phi over symmetry [-2,0,0,1,1,0,0,1,2,-1,0,0,0,0,-1]
Phi of -K [-1,-1,0,0,2,-1,1,1,2,1,1,1,-1,2,2]
Phi of K* [-2,0,0,1,1,2,2,1,2,-1,1,1,1,1,-1]
Phi of -K* [-1,-1,0,0,2,-1,0,0,2,0,0,1,-1,0,0]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial z^2+22z+41
Enhanced Jones-Krushkal polynomial w^3z^2+22w^2z+41w
Inner characteristic polynomial t^5+7t^3+6t
Outer characteristic polynomial t^6+13t^4+13t^2+1
Flat arrow polynomial -6*K1**2 + 3*K2 + 4
2-strand cable arrow polynomial 288*K1**4*K2 - 7600*K1**4 - 192*K1**3*K3 - 2432*K1**2*K2**2 + 10944*K1**2*K2 - 16*K1**2*K3**2 - 2920*K1**2 - 32*K1*K2**2*K3 + 2608*K1*K2*K3 + 40*K1*K3*K4 - 88*K2**4 + 96*K2**2*K4 - 3648*K2**2 - 688*K3**2 - 34*K4**2 + 3672
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}]]
If K is slice False
Contact