Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1629

Min(phi) over symmetries of the knot is: [-2,-1,-1,1,1,2,-1,0,1,2,3,0,0,0,1,0,1,1,0,-1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1629']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+48t^5+67t^3+6t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1629']
2-strand cable arrow polynomial of the knot is: -448*K1**6 - 256*K1**4*K2**2 + 1760*K1**4*K2 - 4992*K1**4 + 480*K1**3*K2*K3 - 544*K1**3*K3 - 3136*K1**2*K2**2 - 32*K1**2*K2*K4 + 7760*K1**2*K2 - 384*K1**2*K3**2 - 2732*K1**2 + 3216*K1*K2*K3 + 192*K1*K3*K4 - 64*K2**4 + 56*K2**2*K4 - 2968*K2**2 - 884*K3**2 - 48*K4**2 + 3022
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1629']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4147', 'vk6.4180', 'vk6.5389', 'vk6.5422', 'vk6.7507', 'vk6.7534', 'vk6.9012', 'vk6.9045', 'vk6.12440', 'vk6.12473', 'vk6.13357', 'vk6.13576', 'vk6.13609', 'vk6.14245', 'vk6.14692', 'vk6.14728', 'vk6.15186', 'vk6.15852', 'vk6.15888', 'vk6.30841', 'vk6.30874', 'vk6.32029', 'vk6.32062', 'vk6.33073', 'vk6.33106', 'vk6.33843', 'vk6.34303', 'vk6.48491', 'vk6.50270', 'vk6.53545', 'vk6.53934', 'vk6.54265']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4U5U3O5U6U4O6U2
R3 orbit {'O1O2O3U1O4U5U3O5U6U4O6U2'}
R3 orbit length 1
Gauss code of -K O1O2O3U2O4U5U4O6U1U6O5U3
Gauss code of K* O1O2U1O3O4U3O5U6U5U2O6U4
Gauss code of -K* O1O2U3O4O3U1O5U4U6U5O6U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 1 1 2 -1 -1],[ 2 0 2 1 1 1 2],[-1 -2 0 0 2 -2 -2],[-1 -1 0 0 0 -1 -2],[-2 -1 -2 0 0 -2 -2],[ 1 -1 2 1 2 0 0],[ 1 -2 2 2 2 0 0]]
Primitive based matrix [[ 0 2 1 1 -1 -1 -2],[-2 0 0 -2 -2 -2 -1],[-1 0 0 0 -1 -2 -1],[-1 2 0 0 -2 -2 -2],[ 1 2 1 2 0 0 -1],[ 1 2 2 2 0 0 -2],[ 2 1 1 2 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,1,1,2,0,2,2,2,1,0,1,2,1,2,2,2,0,1,2]
Phi over symmetry [-2,-1,-1,1,1,2,-1,0,1,2,3,0,0,0,1,0,1,1,0,-1,1]
Phi of -K [-2,-1,-1,1,1,2,-1,0,1,2,3,0,0,0,1,0,1,1,0,-1,1]
Phi of K* [-2,-1,-1,1,1,2,-1,1,1,1,3,0,0,0,1,0,1,2,0,-1,0]
Phi of -K* [-2,-1,-1,1,1,2,1,2,1,2,1,0,1,2,2,2,2,2,0,0,2]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 2z^2+23z+39
Enhanced Jones-Krushkal polynomial 2w^3z^2+23w^2z+39w
Inner characteristic polynomial t^6+36t^4+49t^2+4
Outer characteristic polynomial t^7+48t^5+67t^3+6t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial -448*K1**6 - 256*K1**4*K2**2 + 1760*K1**4*K2 - 4992*K1**4 + 480*K1**3*K2*K3 - 544*K1**3*K3 - 3136*K1**2*K2**2 - 32*K1**2*K2*K4 + 7760*K1**2*K2 - 384*K1**2*K3**2 - 2732*K1**2 + 3216*K1*K2*K3 + 192*K1*K3*K4 - 64*K2**4 + 56*K2**2*K4 - 2968*K2**2 - 884*K3**2 - 48*K4**2 + 3022
Genus of based matrix 0
Fillings of based matrix [[{2, 6}, {3, 5}, {1, 4}]]
If K is slice True
Contact