Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,0,1,2,3,-1,0,-1,1,1,-1,0,0,1,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.1638'] |
Arrow polynomial of the knot is: -2*K1**2 + K2 + 2 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.6', '4.8', '6.780', '6.804', '6.914', '6.931', '6.946', '6.960', '6.1002', '6.1016', '6.1019', '6.1051', '6.1058', '6.1078', '6.1102', '6.1115', '6.1217', '6.1294', '6.1306', '6.1317', '6.1321', '6.1324', '6.1336', '6.1377', '6.1416', '6.1420', '6.1427', '6.1429', '6.1434', '6.1436', '6.1437', '6.1439', '6.1441', '6.1444', '6.1450', '6.1451', '6.1458', '6.1459', '6.1477', '6.1482', '6.1490', '6.1503', '6.1504', '6.1511', '6.1521', '6.1547', '6.1560', '6.1561', '6.1562', '6.1597', '6.1598', '6.1600', '6.1601', '6.1608', '6.1620', '6.1622', '6.1624', '6.1634', '6.1635', '6.1637', '6.1638', '6.1713', '6.1725', '6.1758', '6.1846', '6.1933', '6.1944', '6.1949', '6.1950', '6.1951'] |
Outer characteristic polynomial of the knot is: t^7+27t^5+112t^3+13t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1638'] |
2-strand cable arrow polynomial of the knot is: 64*K1**4*K2 - 1920*K1**4 - 688*K1**2*K2**2 + 3392*K1**2*K2 - 1332*K1**2 + 640*K1*K2*K3 - 8*K2**4 + 8*K2**2*K4 - 1224*K2**2 - 156*K3**2 - 2*K4**2 + 1224 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1638'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71636', 'vk6.71811', 'vk6.72231', 'vk6.72363', 'vk6.73406', 'vk6.73599', 'vk6.73878', 'vk6.74281', 'vk6.74906', 'vk6.75375', 'vk6.75682', 'vk6.75883', 'vk6.76458', 'vk6.77254', 'vk6.77346', 'vk6.77594', 'vk6.77692', 'vk6.78337', 'vk6.78874', 'vk6.79324', 'vk6.80118', 'vk6.80299', 'vk6.80426', 'vk6.80786', 'vk6.82026', 'vk6.82760', 'vk6.85367', 'vk6.86689', 'vk6.86945', 'vk6.87054', 'vk6.87615', 'vk6.89453'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U4O5U3U6O4U2U1O6U5 |
R3 orbit | {'O1O2O3U4O5U3U6O4U2U1O6U5'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U4O5U3U2O6U5U1O4U6 |
Gauss code of K* | O1O2U3O4O5U2O6U5U4U1O3U6 |
Gauss code of -K* | O1O2U3O4O5U6O3U5U2U1O6U4 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 0 0 0 -1 2 -1],[ 0 0 0 1 -1 1 0],[ 0 0 0 1 -1 0 1],[ 0 -1 -1 0 0 0 1],[ 1 1 1 0 0 3 -1],[-2 -1 0 0 -3 0 -2],[ 1 0 -1 -1 1 2 0]] |
Primitive based matrix | [[ 0 2 0 0 0 -1 -1],[-2 0 0 0 -1 -2 -3],[ 0 0 0 1 0 1 -1],[ 0 0 -1 0 -1 1 0],[ 0 1 0 1 0 0 -1],[ 1 2 -1 -1 0 0 1],[ 1 3 1 0 1 -1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,0,0,0,1,1,0,0,1,2,3,-1,0,-1,1,1,-1,0,0,1,-1] |
Phi over symmetry | [-2,0,0,0,1,1,0,0,1,2,3,-1,0,-1,1,1,-1,0,0,1,-1] |
Phi of -K | [-1,-1,0,0,0,2,-1,1,2,2,1,0,0,1,0,0,-1,1,-1,2,2] |
Phi of K* | [-2,0,0,0,1,1,1,2,2,0,1,0,1,0,1,1,0,2,1,2,-1] |
Phi of -K* | [-1,-1,0,0,0,2,-1,0,1,1,3,-1,-1,0,2,-1,-1,0,0,0,1] |
Symmetry type of based matrix | c |
u-polynomial | -t^2+2t |
Normalized Jones-Krushkal polynomial | 5z^2+22z+25 |
Enhanced Jones-Krushkal polynomial | 5w^3z^2+22w^2z+25w |
Inner characteristic polynomial | t^6+21t^4+79t^2+9 |
Outer characteristic polynomial | t^7+27t^5+112t^3+13t |
Flat arrow polynomial | -2*K1**2 + K2 + 2 |
2-strand cable arrow polynomial | 64*K1**4*K2 - 1920*K1**4 - 688*K1**2*K2**2 + 3392*K1**2*K2 - 1332*K1**2 + 640*K1*K2*K3 - 8*K2**4 + 8*K2**2*K4 - 1224*K2**2 - 156*K3**2 - 2*K4**2 + 1224 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {4, 5}, {1, 3}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}]] |
If K is slice | False |