Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1641

Min(phi) over symmetries of the knot is: [-2,-1,-1,1,1,2,-1,0,1,2,2,1,1,1,0,2,1,2,0,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1641']
Arrow polynomial of the knot is: 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.209', '6.231', '6.391', '6.419', '6.600', '6.661', '6.744', '6.812', '6.826', '6.1114', '6.1125', '6.1202', '6.1275', '6.1292', '6.1305', '6.1322', '6.1365', '6.1481', '6.1483', '6.1497', '6.1543', '6.1549', '6.1572', '6.1577', '6.1580', '6.1594', '6.1641', '6.1658', '6.1683', '6.1753', '6.1830', '6.1907', '6.1928']
Outer characteristic polynomial of the knot is: t^7+36t^5+57t^3+13t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1641']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 960*K1**4*K2 - 3408*K1**4 + 256*K1**3*K2*K3 + 32*K1**3*K3*K4 - 608*K1**3*K3 - 192*K1**2*K2**4 + 480*K1**2*K2**3 + 224*K1**2*K2**2*K4 - 4576*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 256*K1**2*K2*K4 + 8736*K1**2*K2 - 848*K1**2*K3**2 - 80*K1**2*K4**2 - 5316*K1**2 + 448*K1*K2**3*K3 - 1056*K1*K2**2*K3 - 512*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 6696*K1*K2*K3 + 1024*K1*K3*K4 + 216*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 576*K2**4 - 32*K2**3*K6 - 224*K2**2*K3**2 - 16*K2**2*K4**2 + 1416*K2**2*K4 - 4902*K2**2 + 344*K2*K3*K5 + 16*K2*K4*K6 - 2036*K3**2 - 632*K4**2 - 112*K5**2 - 2*K6**2 + 4694
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1641']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.13871', 'vk6.13968', 'vk6.14127', 'vk6.14350', 'vk6.14946', 'vk6.15069', 'vk6.15579', 'vk6.16049', 'vk6.16302', 'vk6.16325', 'vk6.17426', 'vk6.22613', 'vk6.22644', 'vk6.23938', 'vk6.33690', 'vk6.33768', 'vk6.34142', 'vk6.34254', 'vk6.34599', 'vk6.36209', 'vk6.36238', 'vk6.42296', 'vk6.53849', 'vk6.53897', 'vk6.54088', 'vk6.54390', 'vk6.54583', 'vk6.55582', 'vk6.59028', 'vk6.59055', 'vk6.60072', 'vk6.64548']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4U2U5U3O5O6U4U6
R3 orbit {'O1O2O3U1O4U2U5U3O5O6U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5O4O6U1U6U2O5U3
Gauss code of K* O1O2O3U2U4O5O4U6U1U3O6U5
Gauss code of -K* O1O2O3U4O5U1U3U5O6O4U6U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 2 1 -1 1],[ 2 0 1 2 2 1 0],[ 1 -1 0 1 2 0 1],[-2 -2 -1 0 0 -2 1],[-1 -2 -2 0 0 -1 1],[ 1 -1 0 2 1 0 1],[-1 0 -1 -1 -1 -1 0]]
Primitive based matrix [[ 0 2 1 1 -1 -1 -2],[-2 0 1 0 -1 -2 -2],[-1 -1 0 -1 -1 -1 0],[-1 0 1 0 -2 -1 -2],[ 1 1 1 2 0 0 -1],[ 1 2 1 1 0 0 -1],[ 2 2 0 2 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,1,1,2,-1,0,1,2,2,1,1,1,0,2,1,2,0,1,1]
Phi over symmetry [-2,-1,-1,1,1,2,-1,0,1,2,2,1,1,1,0,2,1,2,0,1,1]
Phi of -K [-2,-1,-1,1,1,2,0,0,1,3,2,0,0,1,2,1,1,1,-1,1,2]
Phi of K* [-2,-1,-1,1,1,2,1,2,1,2,2,1,1,0,1,1,1,3,0,0,0]
Phi of -K* [-2,-1,-1,1,1,2,1,1,0,2,2,0,1,1,2,1,2,1,-1,-1,0]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 3z^2+22z+33
Enhanced Jones-Krushkal polynomial 3w^3z^2-2w^3z+24w^2z+33w
Inner characteristic polynomial t^6+24t^4+27t^2+4
Outer characteristic polynomial t^7+36t^5+57t^3+13t
Flat arrow polynomial 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
2-strand cable arrow polynomial -64*K1**6 + 960*K1**4*K2 - 3408*K1**4 + 256*K1**3*K2*K3 + 32*K1**3*K3*K4 - 608*K1**3*K3 - 192*K1**2*K2**4 + 480*K1**2*K2**3 + 224*K1**2*K2**2*K4 - 4576*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 256*K1**2*K2*K4 + 8736*K1**2*K2 - 848*K1**2*K3**2 - 80*K1**2*K4**2 - 5316*K1**2 + 448*K1*K2**3*K3 - 1056*K1*K2**2*K3 - 512*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 6696*K1*K2*K3 + 1024*K1*K3*K4 + 216*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 576*K2**4 - 32*K2**3*K6 - 224*K2**2*K3**2 - 16*K2**2*K4**2 + 1416*K2**2*K4 - 4902*K2**2 + 344*K2*K3*K5 + 16*K2*K4*K6 - 2036*K3**2 - 632*K4**2 - 112*K5**2 - 2*K6**2 + 4694
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {4, 5}, {1, 3}], [{5, 6}, {2, 4}, {1, 3}]]
If K is slice False
Contact