Gauss code |
O1O2O3U1O4U3U5U4O5O6U2U6 |
R3 orbit |
{'O1O2O3U1O4U3U5U4O5O6U2U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U2O4O5U6U5U1O6U3 |
Gauss code of K* |
O1O2O3U2U4O5O4U6U5U1O6U3 |
Gauss code of -K* |
O1O2O3U1O4U3U5U4O6O5U6U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 0 2 -1 1],[ 2 0 2 1 1 2 1],[ 0 -2 0 -1 2 -1 1],[ 0 -1 1 0 1 -1 0],[-2 -1 -2 -1 0 -2 0],[ 1 -2 1 1 2 0 1],[-1 -1 -1 0 0 -1 0]] |
Primitive based matrix |
[[ 0 2 1 0 0 -1 -2],[-2 0 0 -1 -2 -2 -1],[-1 0 0 0 -1 -1 -1],[ 0 1 0 0 1 -1 -1],[ 0 2 1 -1 0 -1 -2],[ 1 2 1 1 1 0 -2],[ 2 1 1 1 2 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,0,1,2,0,1,2,2,1,0,1,1,1,-1,1,1,1,2,2] |
Phi over symmetry |
[-2,-1,0,0,1,2,-1,0,1,2,3,0,0,1,1,1,0,0,1,1,1] |
Phi of -K |
[-2,-1,0,0,1,2,-1,0,1,2,3,0,0,1,1,1,0,0,1,1,1] |
Phi of K* |
[-2,-1,0,0,1,2,1,0,1,1,3,0,1,1,2,-1,0,0,0,1,-1] |
Phi of -K* |
[-2,-1,0,0,1,2,2,1,2,1,1,1,1,1,2,1,0,1,1,2,0] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
21z+43 |
Enhanced Jones-Krushkal polynomial |
21w^2z+43w |
Inner characteristic polynomial |
t^6+25t^4+35t^2+1 |
Outer characteristic polynomial |
t^7+35t^5+53t^3+4t |
Flat arrow polynomial |
-12*K1**2 - 4*K1*K2 + 2*K1 + 6*K2 + 2*K3 + 7 |
2-strand cable arrow polynomial |
-256*K1**4*K2**2 + 1600*K1**4*K2 - 5152*K1**4 + 480*K1**3*K2*K3 + 64*K1**3*K3*K4 - 576*K1**3*K3 - 5632*K1**2*K2**2 - 576*K1**2*K2*K4 + 11024*K1**2*K2 - 576*K1**2*K3**2 - 64*K1**2*K3*K5 - 128*K1**2*K4**2 - 6076*K1**2 - 416*K1*K2**2*K3 - 96*K1*K2*K3*K4 + 6888*K1*K2*K3 + 1656*K1*K3*K4 + 216*K1*K4*K5 - 432*K2**4 - 112*K2**2*K3**2 - 16*K2**2*K4**2 + 984*K2**2*K4 - 5236*K2**2 + 184*K2*K3*K5 + 32*K2*K4*K6 - 2344*K3**2 - 884*K4**2 - 108*K5**2 - 12*K6**2 + 5562 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}], [{6}, {4, 5}, {3}, {1, 2}]] |
If K is slice |
False |