Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1651

Min(phi) over symmetries of the knot is: [-2,-2,1,1,1,1,0,0,1,2,2,1,1,1,2,-1,-1,-1,0,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1651']
Arrow polynomial of the knot is: 4*K1**3 - 4*K1*K2 - K1 + K3 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.395', '6.430', '6.440', '6.548', '6.551', '6.774', '6.832', '6.887', '6.908', '6.911', '6.1205', '6.1332', '6.1339', '6.1341', '6.1346', '6.1382', '6.1488', '6.1651', '6.1655', '6.1686']
Outer characteristic polynomial of the knot is: t^7+32t^5+52t^3+15t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1651']
2-strand cable arrow polynomial of the knot is: -576*K1**2*K2**4 + 608*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 5328*K1**2*K2**2 - 352*K1**2*K2*K4 + 4992*K1**2*K2 - 64*K1**2*K4**2 - 3504*K1**2 + 832*K1*K2**3*K3 - 832*K1*K2**2*K3 - 608*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 5472*K1*K2*K3 + 432*K1*K3*K4 + 368*K1*K4*K5 - 288*K2**6 + 448*K2**4*K4 - 2656*K2**4 - 128*K2**3*K6 - 240*K2**2*K3**2 - 112*K2**2*K4**2 + 2888*K2**2*K4 - 2358*K2**2 + 544*K2*K3*K5 + 48*K2*K4*K6 - 1320*K3**2 - 748*K4**2 - 232*K5**2 - 2*K6**2 + 2906
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1651']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17538', 'vk6.17543', 'vk6.17595', 'vk6.17598', 'vk6.24046', 'vk6.24051', 'vk6.24139', 'vk6.24141', 'vk6.36326', 'vk6.36335', 'vk6.36396', 'vk6.36400', 'vk6.43451', 'vk6.43456', 'vk6.43497', 'vk6.43500', 'vk6.55628', 'vk6.55641', 'vk6.55656', 'vk6.55664', 'vk6.60146', 'vk6.60156', 'vk6.60204', 'vk6.60214', 'vk6.65333', 'vk6.65348', 'vk6.65367', 'vk6.65378', 'vk6.68503', 'vk6.68512', 'vk6.68526', 'vk6.68534']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4U5U3U2O5O6U4U6
R3 orbit {'O1O2O3U1O4U5U3U2O5O6U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5O4O6U2U1U6O5U3
Gauss code of K* O1O2O3U1U4O5O4U6U3U2O6U5
Gauss code of -K* O1O2O3U4O5U2U1U5O6O4U6U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 1 1 1 -2 1],[ 2 0 2 1 2 0 0],[-1 -2 0 0 1 -2 1],[-1 -1 0 0 0 -1 1],[-1 -2 -1 0 0 -1 1],[ 2 0 2 1 1 0 1],[-1 0 -1 -1 -1 -1 0]]
Primitive based matrix [[ 0 1 1 1 1 -2 -2],[-1 0 1 1 0 -2 -2],[-1 -1 0 1 0 -1 -2],[-1 -1 -1 0 -1 -1 0],[-1 0 0 1 0 -1 -1],[ 2 2 1 1 1 0 0],[ 2 2 2 0 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,-1,2,2,-1,-1,0,2,2,-1,0,1,2,1,1,0,1,1,0]
Phi over symmetry [-2,-2,1,1,1,1,0,0,1,2,2,1,1,1,2,-1,-1,-1,0,0,-1]
Phi of -K [-2,-2,1,1,1,1,0,1,1,2,3,1,2,2,2,-1,0,-1,0,-1,-1]
Phi of K* [-1,-1,-1,-1,2,2,-1,-1,-1,2,3,-1,0,2,1,0,1,1,2,2,0]
Phi of -K* [-2,-2,1,1,1,1,0,0,1,2,2,1,1,1,2,-1,-1,-1,0,0,-1]
Symmetry type of based matrix c
u-polynomial 2t^2-4t
Normalized Jones-Krushkal polynomial 6z^2+19z+15
Enhanced Jones-Krushkal polynomial -4w^4z^2+10w^3z^2-8w^3z+27w^2z+15w
Inner characteristic polynomial t^6+20t^4+24t^2
Outer characteristic polynomial t^7+32t^5+52t^3+15t
Flat arrow polynomial 4*K1**3 - 4*K1*K2 - K1 + K3 + 1
2-strand cable arrow polynomial -576*K1**2*K2**4 + 608*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 5328*K1**2*K2**2 - 352*K1**2*K2*K4 + 4992*K1**2*K2 - 64*K1**2*K4**2 - 3504*K1**2 + 832*K1*K2**3*K3 - 832*K1*K2**2*K3 - 608*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 5472*K1*K2*K3 + 432*K1*K3*K4 + 368*K1*K4*K5 - 288*K2**6 + 448*K2**4*K4 - 2656*K2**4 - 128*K2**3*K6 - 240*K2**2*K3**2 - 112*K2**2*K4**2 + 2888*K2**2*K4 - 2358*K2**2 + 544*K2*K3*K5 + 48*K2*K4*K6 - 1320*K3**2 - 748*K4**2 - 232*K5**2 - 2*K6**2 + 2906
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {1, 5}, {2, 4}]]
If K is slice False
Contact