Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1657

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,0,0,1,3,3,-1,1,1,0,0,0,1,0,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1657']
Arrow polynomial of the knot is: -4*K1**2 + 2*K2 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.5', '4.7', '4.10', '4.11', '6.142', '6.563', '6.606', '6.788', '6.892', '6.944', '6.949', '6.971', '6.1011', '6.1060', '6.1124', '6.1212', '6.1238', '6.1241', '6.1274', '6.1291', '6.1304', '6.1309', '6.1312', '6.1373', '6.1390', '6.1392', '6.1393', '6.1394', '6.1403', '6.1407', '6.1412', '6.1413', '6.1423', '6.1424', '6.1425', '6.1426', '6.1438', '6.1440', '6.1448', '6.1449', '6.1452', '6.1453', '6.1456', '6.1457', '6.1478', '6.1479', '6.1520', '6.1554', '6.1559', '6.1588', '6.1589', '6.1609', '6.1610', '6.1619', '6.1621', '6.1626', '6.1630', '6.1632', '6.1633', '6.1643', '6.1657', '6.1689', '6.1721', '6.1723', '6.1737', '6.1764', '6.1777', '6.1783', '6.1808', '6.1816', '6.1853', '6.1855', '6.1856', '6.1860', '6.1864', '6.1871', '6.1872', '6.1875', '6.1882', '6.1891', '6.1894', '6.1895', '6.1896', '6.1897', '6.1898', '6.1900', '6.1902', '6.1903', '6.1938', '6.1940', '6.1942', '6.1946', '6.1947', '6.1952', '6.1956', '6.1957', '6.1959', '6.1965', '6.1968', '6.1969', '6.1970', '6.1972', '6.1973', '6.1974', '6.2000', '6.2006', '6.2012', '6.2032', '6.2033', '6.2035', '6.2036', '6.2037', '6.2038', '6.2040', '6.2041', '6.2042', '6.2044', '6.2045', '6.2047', '6.2048', '6.2049', '6.2052', '6.2053', '6.2054', '6.2055', '6.2058', '6.2060', '6.2061', '6.2062', '6.2067', '6.2069', '6.2072', '6.2073', '6.2076', '6.2077', '6.2080']
Outer characteristic polynomial of the knot is: t^7+35t^5+75t^3+12t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1657']
2-strand cable arrow polynomial of the knot is: -128*K1**4*K2**2 + 256*K1**4*K2 - 944*K1**4 + 352*K1**3*K2*K3 - 224*K1**3*K3 + 128*K1**2*K2**3 - 2320*K1**2*K2**2 - 160*K1**2*K2*K4 + 3584*K1**2*K2 - 240*K1**2*K3**2 - 2892*K1**2 - 96*K1*K2**2*K3 + 3712*K1*K2*K3 + 264*K1*K3*K4 - 48*K2**4 + 96*K2**2*K4 - 2248*K2**2 - 1292*K3**2 - 96*K4**2 + 2294
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1657']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11295', 'vk6.11375', 'vk6.12556', 'vk6.12669', 'vk6.18350', 'vk6.18688', 'vk6.24789', 'vk6.25248', 'vk6.30979', 'vk6.31108', 'vk6.32159', 'vk6.32280', 'vk6.36971', 'vk6.37428', 'vk6.44156', 'vk6.44477', 'vk6.52051', 'vk6.52136', 'vk6.52890', 'vk6.52955', 'vk6.56134', 'vk6.56360', 'vk6.60654', 'vk6.60997', 'vk6.63668', 'vk6.63715', 'vk6.64096', 'vk6.64143', 'vk6.65785', 'vk6.66044', 'vk6.68786', 'vk6.68995']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4U5U4U3O6O5U2U6
R3 orbit {'O1O2O3U1O4U5U4U3O6O5U2U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U2O5O4U1U6U5O6U3
Gauss code of K* O1O2O3U4U1O5O4U6U5U3O6U2
Gauss code of -K* O1O2O3U2O4U1U5U4O6O5U3U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 2 1 -1 0],[ 2 0 2 1 0 1 1],[ 0 -2 0 1 1 -2 0],[-2 -1 -1 0 0 -3 -1],[-1 0 -1 0 0 -1 -1],[ 1 -1 2 3 1 0 0],[ 0 -1 0 1 1 0 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 0 -1 -1 -3 -1],[-1 0 0 -1 -1 -1 0],[ 0 1 1 0 0 0 -1],[ 0 1 1 0 0 -2 -2],[ 1 3 1 0 2 0 -1],[ 2 1 0 1 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,0,1,1,3,1,1,1,1,0,0,0,1,2,2,1]
Phi over symmetry [-2,-1,0,0,1,2,0,0,1,3,3,-1,1,1,0,0,0,1,0,1,1]
Phi of -K [-2,-1,0,0,1,2,0,0,1,3,3,-1,1,1,0,0,0,1,0,1,1]
Phi of K* [-2,-1,0,0,1,2,1,1,1,0,3,0,0,1,3,0,-1,0,1,1,0]
Phi of -K* [-2,-1,0,0,1,2,1,1,2,0,1,0,2,1,3,0,1,1,1,1,0]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 3z^2+20z+29
Enhanced Jones-Krushkal polynomial 3w^3z^2-4w^3z+24w^2z+29w
Inner characteristic polynomial t^6+25t^4+39t^2
Outer characteristic polynomial t^7+35t^5+75t^3+12t
Flat arrow polynomial -4*K1**2 + 2*K2 + 3
2-strand cable arrow polynomial -128*K1**4*K2**2 + 256*K1**4*K2 - 944*K1**4 + 352*K1**3*K2*K3 - 224*K1**3*K3 + 128*K1**2*K2**3 - 2320*K1**2*K2**2 - 160*K1**2*K2*K4 + 3584*K1**2*K2 - 240*K1**2*K3**2 - 2892*K1**2 - 96*K1*K2**2*K3 + 3712*K1*K2*K3 + 264*K1*K3*K4 - 48*K2**4 + 96*K2**2*K4 - 2248*K2**2 - 1292*K3**2 - 96*K4**2 + 2294
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{2, 6}, {4, 5}, {1, 3}]]
If K is slice False
Contact