Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1660

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,2,2,2,0,1,1,1,-1,0,0,-1,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1660']
Arrow polynomial of the knot is: -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.239', '6.428', '6.470', '6.556', '6.700', '6.910', '6.962', '6.1006', '6.1013', '6.1038', '6.1207', '6.1224', '6.1225', '6.1269', '6.1270', '6.1308', '6.1319', '6.1320', '6.1323', '6.1485', '6.1551', '6.1579', '6.1581', '6.1660', '6.1672', '6.1679', '6.1711', '6.1719', '6.1732', '6.1745', '6.1748', '6.1827', '6.1836', '6.1838', '6.1850', '6.1866']
Outer characteristic polynomial of the knot is: t^7+28t^5+53t^3+6t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1660']
2-strand cable arrow polynomial of the knot is: -128*K1**6 + 448*K1**4*K2 - 3424*K1**4 + 64*K1**3*K2*K3 + 32*K1**3*K3*K4 - 96*K1**3*K3 + 160*K1**2*K2**3 - 3328*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 96*K1**2*K2*K4 + 6808*K1**2*K2 - 1312*K1**2*K3**2 - 112*K1**2*K4**2 - 3448*K1**2 - 800*K1*K2**2*K3 - 256*K1*K2*K3*K4 + 5392*K1*K2*K3 + 1776*K1*K3*K4 + 176*K1*K4*K5 - 184*K2**4 - 160*K2**2*K3**2 - 48*K2**2*K4**2 + 696*K2**2*K4 - 3436*K2**2 + 184*K2*K3*K5 + 32*K2*K4*K6 - 1884*K3**2 - 654*K4**2 - 60*K5**2 - 4*K6**2 + 3596
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1660']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4832', 'vk6.5175', 'vk6.6396', 'vk6.6827', 'vk6.8357', 'vk6.8787', 'vk6.9725', 'vk6.10028', 'vk6.11616', 'vk6.11969', 'vk6.12958', 'vk6.20462', 'vk6.20740', 'vk6.21816', 'vk6.27849', 'vk6.29358', 'vk6.31419', 'vk6.32593', 'vk6.39273', 'vk6.39780', 'vk6.41451', 'vk6.46344', 'vk6.47579', 'vk6.47919', 'vk6.49069', 'vk6.49901', 'vk6.51323', 'vk6.51540', 'vk6.53223', 'vk6.57321', 'vk6.62010', 'vk6.64304']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2O4U1U3U5O6O5U4U6
R3 orbit {'O1O2O3U2O4U1U3U5O6O5U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5O6O4U6U1U3O5U2
Gauss code of K* O1O2O3U4U3O5O4U1U6U2O6U5
Gauss code of -K* O1O2O3U4O5U2U5U3O6O4U1U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 1 1 1 0],[ 2 0 0 2 2 2 1],[ 1 0 0 1 1 1 0],[-1 -2 -1 0 1 -1 1],[-1 -2 -1 -1 0 -1 0],[-1 -2 -1 1 1 0 0],[ 0 -1 0 -1 0 0 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 1 0 -1 -2],[-1 -1 0 1 1 -1 -2],[-1 -1 -1 0 0 -1 -2],[ 0 0 -1 0 0 0 -1],[ 1 1 1 1 0 0 0],[ 2 2 2 2 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,-1,0,1,2,-1,-1,1,2,0,1,2,0,1,0]
Phi over symmetry [-2,-1,0,1,1,1,0,1,2,2,2,0,1,1,1,-1,0,0,-1,1,1]
Phi of -K [-2,-1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,-1,-1,1]
Phi of K* [-1,-1,-1,0,1,2,-1,-1,1,1,1,-1,2,1,1,1,1,1,1,1,1]
Phi of -K* [-2,-1,0,1,1,1,0,1,2,2,2,0,1,1,1,-1,0,0,-1,1,1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 3z^2+22z+33
Enhanced Jones-Krushkal polynomial 3w^3z^2+22w^2z+33w
Inner characteristic polynomial t^6+20t^4+22t^2+1
Outer characteristic polynomial t^7+28t^5+53t^3+6t
Flat arrow polynomial -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
2-strand cable arrow polynomial -128*K1**6 + 448*K1**4*K2 - 3424*K1**4 + 64*K1**3*K2*K3 + 32*K1**3*K3*K4 - 96*K1**3*K3 + 160*K1**2*K2**3 - 3328*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 96*K1**2*K2*K4 + 6808*K1**2*K2 - 1312*K1**2*K3**2 - 112*K1**2*K4**2 - 3448*K1**2 - 800*K1*K2**2*K3 - 256*K1*K2*K3*K4 + 5392*K1*K2*K3 + 1776*K1*K3*K4 + 176*K1*K4*K5 - 184*K2**4 - 160*K2**2*K3**2 - 48*K2**2*K4**2 + 696*K2**2*K4 - 3436*K2**2 + 184*K2*K3*K5 + 32*K2*K4*K6 - 1884*K3**2 - 654*K4**2 - 60*K5**2 - 4*K6**2 + 3596
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {4, 5}, {3}, {2}, {1}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {2, 3}, {1}]]
If K is slice False
Contact