Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,2,2,2,0,1,1,1,-1,0,0,-1,1,1] |
Flat knots (up to 7 crossings) with same phi are :['6.1660'] |
Arrow polynomial of the knot is: -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.239', '6.428', '6.470', '6.556', '6.700', '6.910', '6.962', '6.1006', '6.1013', '6.1038', '6.1207', '6.1224', '6.1225', '6.1269', '6.1270', '6.1308', '6.1319', '6.1320', '6.1323', '6.1485', '6.1551', '6.1579', '6.1581', '6.1660', '6.1672', '6.1679', '6.1711', '6.1719', '6.1732', '6.1745', '6.1748', '6.1827', '6.1836', '6.1838', '6.1850', '6.1866'] |
Outer characteristic polynomial of the knot is: t^7+28t^5+53t^3+6t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1660'] |
2-strand cable arrow polynomial of the knot is: -128*K1**6 + 448*K1**4*K2 - 3424*K1**4 + 64*K1**3*K2*K3 + 32*K1**3*K3*K4 - 96*K1**3*K3 + 160*K1**2*K2**3 - 3328*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 96*K1**2*K2*K4 + 6808*K1**2*K2 - 1312*K1**2*K3**2 - 112*K1**2*K4**2 - 3448*K1**2 - 800*K1*K2**2*K3 - 256*K1*K2*K3*K4 + 5392*K1*K2*K3 + 1776*K1*K3*K4 + 176*K1*K4*K5 - 184*K2**4 - 160*K2**2*K3**2 - 48*K2**2*K4**2 + 696*K2**2*K4 - 3436*K2**2 + 184*K2*K3*K5 + 32*K2*K4*K6 - 1884*K3**2 - 654*K4**2 - 60*K5**2 - 4*K6**2 + 3596 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1660'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4832', 'vk6.5175', 'vk6.6396', 'vk6.6827', 'vk6.8357', 'vk6.8787', 'vk6.9725', 'vk6.10028', 'vk6.11616', 'vk6.11969', 'vk6.12958', 'vk6.20462', 'vk6.20740', 'vk6.21816', 'vk6.27849', 'vk6.29358', 'vk6.31419', 'vk6.32593', 'vk6.39273', 'vk6.39780', 'vk6.41451', 'vk6.46344', 'vk6.47579', 'vk6.47919', 'vk6.49069', 'vk6.49901', 'vk6.51323', 'vk6.51540', 'vk6.53223', 'vk6.57321', 'vk6.62010', 'vk6.64304'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U2O4U1U3U5O6O5U4U6 |
R3 orbit | {'O1O2O3U2O4U1U3U5O6O5U4U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U4U5O6O4U6U1U3O5U2 |
Gauss code of K* | O1O2O3U4U3O5O4U1U6U2O6U5 |
Gauss code of -K* | O1O2O3U4O5U2U5U3O6O4U1U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 -1 1 1 1 0],[ 2 0 0 2 2 2 1],[ 1 0 0 1 1 1 0],[-1 -2 -1 0 1 -1 1],[-1 -2 -1 -1 0 -1 0],[-1 -2 -1 1 1 0 0],[ 0 -1 0 -1 0 0 0]] |
Primitive based matrix | [[ 0 1 1 1 0 -1 -2],[-1 0 1 1 0 -1 -2],[-1 -1 0 1 1 -1 -2],[-1 -1 -1 0 0 -1 -2],[ 0 0 -1 0 0 0 -1],[ 1 1 1 1 0 0 0],[ 2 2 2 2 1 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-1,-1,-1,0,1,2,-1,-1,0,1,2,-1,-1,1,2,0,1,2,0,1,0] |
Phi over symmetry | [-2,-1,0,1,1,1,0,1,2,2,2,0,1,1,1,-1,0,0,-1,1,1] |
Phi of -K | [-2,-1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,-1,-1,1] |
Phi of K* | [-1,-1,-1,0,1,2,-1,-1,1,1,1,-1,2,1,1,1,1,1,1,1,1] |
Phi of -K* | [-2,-1,0,1,1,1,0,1,2,2,2,0,1,1,1,-1,0,0,-1,1,1] |
Symmetry type of based matrix | c |
u-polynomial | t^2-2t |
Normalized Jones-Krushkal polynomial | 3z^2+22z+33 |
Enhanced Jones-Krushkal polynomial | 3w^3z^2+22w^2z+33w |
Inner characteristic polynomial | t^6+20t^4+22t^2+1 |
Outer characteristic polynomial | t^7+28t^5+53t^3+6t |
Flat arrow polynomial | -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4 |
2-strand cable arrow polynomial | -128*K1**6 + 448*K1**4*K2 - 3424*K1**4 + 64*K1**3*K2*K3 + 32*K1**3*K3*K4 - 96*K1**3*K3 + 160*K1**2*K2**3 - 3328*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 96*K1**2*K2*K4 + 6808*K1**2*K2 - 1312*K1**2*K3**2 - 112*K1**2*K4**2 - 3448*K1**2 - 800*K1*K2**2*K3 - 256*K1*K2*K3*K4 + 5392*K1*K2*K3 + 1776*K1*K3*K4 + 176*K1*K4*K5 - 184*K2**4 - 160*K2**2*K3**2 - 48*K2**2*K4**2 + 696*K2**2*K4 - 3436*K2**2 + 184*K2*K3*K5 + 32*K2*K4*K6 - 1884*K3**2 - 654*K4**2 - 60*K5**2 - 4*K6**2 + 3596 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {4, 5}, {3}, {2}, {1}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {2, 3}, {1}]] |
If K is slice | False |