Gauss code |
O1O2O3U2O4U1U4U3O5O6U5U6 |
R3 orbit |
{'O1O2O3U2O4U1U4U3O5O6U5U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U5O4O5U1U6U3O6U2 |
Gauss code of K* |
O1O2O3U4U5O4O5U1U6U3O6U2 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -1 2 1 -1 1],[ 2 0 0 3 1 0 0],[ 1 0 0 1 0 0 0],[-2 -3 -1 0 0 0 0],[-1 -1 0 0 0 0 0],[ 1 0 0 0 0 0 1],[-1 0 0 0 0 -1 0]] |
Primitive based matrix |
[[ 0 2 1 1 -1 -1 -2],[-2 0 0 0 0 -1 -3],[-1 0 0 0 0 0 -1],[-1 0 0 0 -1 0 0],[ 1 0 0 1 0 0 0],[ 1 1 0 0 0 0 0],[ 2 3 1 0 0 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,1,1,2,0,0,0,1,3,0,0,0,1,1,0,0,0,0,0] |
Phi over symmetry |
[-2,-1,-1,1,1,2,0,0,0,1,3,0,0,0,1,1,0,0,0,0,0] |
Phi of -K |
[-2,-1,-1,1,1,2,1,1,2,3,1,0,2,1,3,2,2,2,0,1,1] |
Phi of K* |
[-2,-1,-1,1,1,2,1,1,2,3,1,0,2,1,3,2,2,2,0,1,1] |
Phi of -K* |
[-2,-1,-1,1,1,2,0,0,0,1,3,0,0,0,1,1,0,0,0,0,0] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
4z^2+24z+33 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2+24w^2z+33w |
Inner characteristic polynomial |
t^6+12t^4+12t^2+1 |
Outer characteristic polynomial |
t^7+24t^5+48t^3+7t |
Flat arrow polynomial |
8*K1**3 - 16*K1**2 - 8*K1*K2 - 2*K1 + 8*K2 + 2*K3 + 9 |
2-strand cable arrow polynomial |
-1024*K1**6 - 2048*K1**4*K2**2 + 5120*K1**4*K2 - 7168*K1**4 + 2176*K1**3*K2*K3 - 960*K1**3*K3 - 1152*K1**2*K2**4 + 4864*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 15680*K1**2*K2**2 - 1536*K1**2*K2*K4 + 12528*K1**2*K2 - 768*K1**2*K3**2 - 192*K1**2*K4**2 - 1960*K1**2 + 2048*K1*K2**3*K3 + 64*K1*K2**2*K3*K4 - 3008*K1*K2**2*K3 - 640*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 9904*K1*K2*K3 - 64*K1*K2*K4*K5 + 1264*K1*K3*K4 + 192*K1*K4*K5 - 64*K2**6 + 128*K2**4*K4 - 4064*K2**4 - 64*K2**3*K6 - 1184*K2**2*K3**2 - 160*K2**2*K4**2 + 3120*K2**2*K4 - 2028*K2**2 + 688*K2*K3*K5 + 128*K2*K4*K6 - 1480*K3**2 - 560*K4**2 - 112*K5**2 - 12*K6**2 + 3574 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
True |