Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1666

Min(phi) over symmetries of the knot is: [-1,-1,0,0,1,1,-1,0,0,1,1,0,1,1,2,1,0,1,1,1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1666']
Arrow polynomial of the knot is: -12*K1**2 + 6*K2 + 7
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.612', '6.1246', '6.1402', '6.1410', '6.1411', '6.1468', '6.1617', '6.1666', '6.1667', '6.1815', '6.1904', '6.1994', '6.1995', '6.1996', '6.2001', '6.2014', '6.2015', '6.2016', '6.2017', '6.2020', '6.2022']
Outer characteristic polynomial of the knot is: t^7+18t^5+24t^3+3t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1666', '7.44874']
2-strand cable arrow polynomial of the knot is: -192*K1**4*K2**2 + 864*K1**4*K2 - 2336*K1**4 + 256*K1**3*K2*K3 - 352*K1**3*K3 + 128*K1**2*K2**3 - 3008*K1**2*K2**2 - 128*K1**2*K2*K4 + 4712*K1**2*K2 - 192*K1**2*K3**2 - 2000*K1**2 - 64*K1*K2**2*K3 + 2776*K1*K2*K3 + 192*K1*K3*K4 - 144*K2**4 + 128*K2**2*K4 - 1760*K2**2 - 656*K3**2 - 64*K4**2 + 1838
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1666']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4430', 'vk6.4525', 'vk6.4844', 'vk6.5188', 'vk6.5812', 'vk6.5939', 'vk6.6411', 'vk6.6428', 'vk6.6844', 'vk6.7980', 'vk6.8372', 'vk6.8389', 'vk6.8800', 'vk6.9291', 'vk6.9410', 'vk6.9736', 'vk6.17886', 'vk6.17951', 'vk6.18280', 'vk6.18615', 'vk6.24389', 'vk6.25170', 'vk6.30037', 'vk6.30100', 'vk6.36890', 'vk6.37348', 'vk6.39824', 'vk6.39844', 'vk6.43824', 'vk6.44111', 'vk6.44434', 'vk6.46387', 'vk6.46406', 'vk6.47963', 'vk6.47983', 'vk6.48633', 'vk6.49082', 'vk6.49917', 'vk6.50617', 'vk6.51137']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2O4U3U1U5O6O5U4U6
R3 orbit {'O1O2U1O3O4U2U3U5O6O5U4U6', 'O1O2O3U2O4U3U1U5O6O5U4U6'}
R3 orbit length 2
Gauss code of -K O1O2O3U4U5O6O4U6U3U1O5U2
Gauss code of K* O1O2O3U4U3O5O4U2U6U1O6U5
Gauss code of -K* O1O2O3U4O5U3U5U2O6O4U1U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 0 1 1 0],[ 1 0 -1 1 2 1 1],[ 1 1 0 1 1 1 0],[ 0 -1 -1 0 1 0 1],[-1 -2 -1 -1 0 -1 0],[-1 -1 -1 0 1 0 0],[ 0 -1 0 -1 0 0 0]]
Primitive based matrix [[ 0 1 1 0 0 -1 -1],[-1 0 1 0 0 -1 -1],[-1 -1 0 0 -1 -1 -2],[ 0 0 0 0 -1 0 -1],[ 0 0 1 1 0 -1 -1],[ 1 1 1 0 1 0 1],[ 1 1 2 1 1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,0,0,1,1,-1,0,0,1,1,0,1,1,2,1,0,1,1,1,-1]
Phi over symmetry [-1,-1,0,0,1,1,-1,0,0,1,1,0,1,1,2,1,0,1,1,1,-1]
Phi of -K [-1,-1,0,0,1,1,-1,0,1,1,1,0,0,0,1,-1,0,1,1,1,1]
Phi of K* [-1,-1,0,0,1,1,-1,0,1,0,1,1,1,1,1,1,0,0,0,1,-1]
Phi of -K* [-1,-1,0,0,1,1,-1,1,1,1,2,0,1,1,1,-1,0,0,0,1,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 13z+27
Enhanced Jones-Krushkal polynomial 13w^2z+27w
Inner characteristic polynomial t^6+14t^4+8t^2
Outer characteristic polynomial t^7+18t^5+24t^3+3t
Flat arrow polynomial -12*K1**2 + 6*K2 + 7
2-strand cable arrow polynomial -192*K1**4*K2**2 + 864*K1**4*K2 - 2336*K1**4 + 256*K1**3*K2*K3 - 352*K1**3*K3 + 128*K1**2*K2**3 - 3008*K1**2*K2**2 - 128*K1**2*K2*K4 + 4712*K1**2*K2 - 192*K1**2*K3**2 - 2000*K1**2 - 64*K1*K2**2*K3 + 2776*K1*K2*K3 + 192*K1*K3*K4 - 144*K2**4 + 128*K2**2*K4 - 1760*K2**2 - 656*K3**2 - 64*K4**2 + 1838
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}]]
If K is slice False
Contact