| Gauss code |
O1O2O3U2O4U3U5U1O5O6U4U6 |
| R3 orbit |
{'O1O2O3U2O4U3U5U1O5O6U4U6'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3U4U5O4O6U3U6U1O5U2 |
| Gauss code of K* |
O1O2O3U2U4O5O4U3U6U1O6U5 |
| Gauss code of -K* |
O1O2O3U4O5U3U5U1O6O4U6U2 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 0 -1 0 1 -1 1],[ 0 0 -1 1 1 0 1],[ 1 1 0 1 1 1 0],[ 0 -1 -1 0 1 0 1],[-1 -1 -1 -1 0 -1 1],[ 1 0 -1 0 1 0 1],[-1 -1 0 -1 -1 -1 0]] |
| Primitive based matrix |
[[ 0 1 1 0 0 -1 -1],[-1 0 1 -1 -1 -1 -1],[-1 -1 0 -1 -1 0 -1],[ 0 1 1 0 1 -1 0],[ 0 1 1 -1 0 -1 0],[ 1 1 0 1 1 0 1],[ 1 1 1 0 0 -1 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-1,-1,0,0,1,1,-1,1,1,1,1,1,1,0,1,-1,1,0,1,0,-1] |
| Phi over symmetry |
[-1,-1,0,0,1,1,-1,0,0,1,1,1,1,0,1,-1,1,1,1,1,-1] |
| Phi of -K |
[-1,-1,0,0,1,1,-1,0,0,1,2,1,1,1,1,-1,0,0,0,0,-1] |
| Phi of K* |
[-1,-1,0,0,1,1,-1,0,0,1,2,0,0,1,1,-1,1,0,1,0,-1] |
| Phi of -K* |
[-1,-1,0,0,1,1,-1,0,0,1,1,1,1,0,1,-1,1,1,1,1,-1] |
| Symmetry type of based matrix |
c |
| u-polynomial |
0 |
| Normalized Jones-Krushkal polynomial |
2z^2+23z+39 |
| Enhanced Jones-Krushkal polynomial |
2w^3z^2+23w^2z+39w |
| Inner characteristic polynomial |
t^6+12t^4+5t^2 |
| Outer characteristic polynomial |
t^7+16t^5+17t^3+2t |
| Flat arrow polynomial |
-12*K1**2 + 6*K2 + 7 |
| 2-strand cable arrow polynomial |
-1152*K1**6 - 576*K1**4*K2**2 + 2656*K1**4*K2 - 8288*K1**4 + 736*K1**3*K2*K3 - 512*K1**3*K3 - 5952*K1**2*K2**2 - 64*K1**2*K2*K4 + 11560*K1**2*K2 - 288*K1**2*K3**2 - 1888*K1**2 - 128*K1*K2**2*K3 + 4792*K1*K2*K3 + 136*K1*K3*K4 - 304*K2**4 + 352*K2**2*K4 - 3600*K2**2 - 1032*K3**2 - 104*K4**2 + 3654 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{5, 6}, {2, 4}, {1, 3}]] |
| If K is slice |
False |