| Gauss code |
O1O2O3U4O5U2U1U6O4O6U5U3 |
| R3 orbit |
{'O1O2O3U4O5U2U1U6O4O6U5U3'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3U1U4O5O6U5U3U2O4U6 |
| Gauss code of K* |
O1O2O3U4U3O5O6U2U1U6O4U5 |
| Gauss code of -K* |
O1O2O3U4O5U6U3U2O6O4U1U5 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -1 -1 2 -2 1 1],[ 1 0 0 2 0 1 2],[ 1 0 0 1 1 0 2],[-2 -2 -1 0 -2 -1 -1],[ 2 0 -1 2 0 2 2],[-1 -1 0 1 -2 0 -1],[-1 -2 -2 1 -2 1 0]] |
| Primitive based matrix |
[[ 0 2 1 1 -1 -1 -2],[-2 0 -1 -1 -1 -2 -2],[-1 1 0 1 -2 -2 -2],[-1 1 -1 0 0 -1 -2],[ 1 1 2 0 0 0 1],[ 1 2 2 1 0 0 0],[ 2 2 2 2 -1 0 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-2,-1,-1,1,1,2,1,1,1,2,2,-1,2,2,2,0,1,2,0,-1,0] |
| Phi over symmetry |
[-2,-1,-1,1,1,2,-1,0,2,2,2,0,0,2,1,1,2,2,-1,1,1] |
| Phi of -K |
[-2,-1,-1,1,1,2,1,2,1,1,2,0,0,1,1,0,2,2,-1,0,0] |
| Phi of K* |
[-2,-1,-1,1,1,2,0,0,1,2,2,-1,1,2,1,0,0,1,0,1,2] |
| Phi of -K* |
[-2,-1,-1,1,1,2,-1,0,2,2,2,0,0,2,1,1,2,2,-1,1,1] |
| Symmetry type of based matrix |
c |
| u-polynomial |
0 |
| Normalized Jones-Krushkal polynomial |
6z^2+19z+15 |
| Enhanced Jones-Krushkal polynomial |
-2w^4z^2+8w^3z^2-8w^3z+27w^2z+15w |
| Inner characteristic polynomial |
t^6+30t^4+67t^2+1 |
| Outer characteristic polynomial |
t^7+42t^5+111t^3+16t |
| Flat arrow polynomial |
4*K1**3 - 4*K1*K2 - K1 + K3 + 1 |
| 2-strand cable arrow polynomial |
-448*K1**2*K2**4 + 1120*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 6384*K1**2*K2**2 - 480*K1**2*K2*K4 + 5864*K1**2*K2 - 64*K1**2*K4**2 - 4232*K1**2 + 1056*K1*K2**3*K3 - 1216*K1*K2**2*K3 - 768*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 6240*K1*K2*K3 + 608*K1*K3*K4 + 288*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1376*K2**4 - 32*K2**3*K6 - 368*K2**2*K3**2 - 16*K2**2*K4**2 + 1792*K2**2*K4 - 2974*K2**2 + 568*K2*K3*K5 + 16*K2*K4*K6 - 1520*K3**2 - 548*K4**2 - 200*K5**2 - 2*K6**2 + 3106 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}]] |
| If K is slice |
False |