Min(phi) over symmetries of the knot is: [-2,-1,-1,1,1,2,-1,0,2,2,2,0,0,2,1,1,2,2,-1,1,1] |
Flat knots (up to 7 crossings) with same phi are :['6.1686'] |
Arrow polynomial of the knot is: 4*K1**3 - 4*K1*K2 - K1 + K3 + 1 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.395', '6.430', '6.440', '6.548', '6.551', '6.774', '6.832', '6.887', '6.908', '6.911', '6.1205', '6.1332', '6.1339', '6.1341', '6.1346', '6.1382', '6.1488', '6.1651', '6.1655', '6.1686'] |
Outer characteristic polynomial of the knot is: t^7+42t^5+111t^3+16t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1686'] |
2-strand cable arrow polynomial of the knot is: -448*K1**2*K2**4 + 1120*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 6384*K1**2*K2**2 - 480*K1**2*K2*K4 + 5864*K1**2*K2 - 64*K1**2*K4**2 - 4232*K1**2 + 1056*K1*K2**3*K3 - 1216*K1*K2**2*K3 - 768*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 6240*K1*K2*K3 + 608*K1*K3*K4 + 288*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1376*K2**4 - 32*K2**3*K6 - 368*K2**2*K3**2 - 16*K2**2*K4**2 + 1792*K2**2*K4 - 2974*K2**2 + 568*K2*K3*K5 + 16*K2*K4*K6 - 1520*K3**2 - 548*K4**2 - 200*K5**2 - 2*K6**2 + 3106 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1686'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16999', 'vk6.17242', 'vk6.20528', 'vk6.21924', 'vk6.23408', 'vk6.23717', 'vk6.27980', 'vk6.29449', 'vk6.35471', 'vk6.35918', 'vk6.39386', 'vk6.41575', 'vk6.42907', 'vk6.43208', 'vk6.45961', 'vk6.47638', 'vk6.55168', 'vk6.55414', 'vk6.57398', 'vk6.58573', 'vk6.59550', 'vk6.59890', 'vk6.62065', 'vk6.63050', 'vk6.64972', 'vk6.65180', 'vk6.66944', 'vk6.67803', 'vk6.68264', 'vk6.68420', 'vk6.69556', 'vk6.70252'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U4O5U2U1U6O4O6U5U3 |
R3 orbit | {'O1O2O3U4O5U2U1U6O4O6U5U3'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U1U4O5O6U5U3U2O4U6 |
Gauss code of K* | O1O2O3U4U3O5O6U2U1U6O4U5 |
Gauss code of -K* | O1O2O3U4O5U6U3U2O6O4U1U5 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 -1 2 -2 1 1],[ 1 0 0 2 0 1 2],[ 1 0 0 1 1 0 2],[-2 -2 -1 0 -2 -1 -1],[ 2 0 -1 2 0 2 2],[-1 -1 0 1 -2 0 -1],[-1 -2 -2 1 -2 1 0]] |
Primitive based matrix | [[ 0 2 1 1 -1 -1 -2],[-2 0 -1 -1 -1 -2 -2],[-1 1 0 1 -2 -2 -2],[-1 1 -1 0 0 -1 -2],[ 1 1 2 0 0 0 1],[ 1 2 2 1 0 0 0],[ 2 2 2 2 -1 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,-1,1,1,2,1,1,1,2,2,-1,2,2,2,0,1,2,0,-1,0] |
Phi over symmetry | [-2,-1,-1,1,1,2,-1,0,2,2,2,0,0,2,1,1,2,2,-1,1,1] |
Phi of -K | [-2,-1,-1,1,1,2,1,2,1,1,2,0,0,1,1,0,2,2,-1,0,0] |
Phi of K* | [-2,-1,-1,1,1,2,0,0,1,2,2,-1,1,2,1,0,0,1,0,1,2] |
Phi of -K* | [-2,-1,-1,1,1,2,-1,0,2,2,2,0,0,2,1,1,2,2,-1,1,1] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 6z^2+19z+15 |
Enhanced Jones-Krushkal polynomial | -2w^4z^2+8w^3z^2-8w^3z+27w^2z+15w |
Inner characteristic polynomial | t^6+30t^4+67t^2+1 |
Outer characteristic polynomial | t^7+42t^5+111t^3+16t |
Flat arrow polynomial | 4*K1**3 - 4*K1*K2 - K1 + K3 + 1 |
2-strand cable arrow polynomial | -448*K1**2*K2**4 + 1120*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 6384*K1**2*K2**2 - 480*K1**2*K2*K4 + 5864*K1**2*K2 - 64*K1**2*K4**2 - 4232*K1**2 + 1056*K1*K2**3*K3 - 1216*K1*K2**2*K3 - 768*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 6240*K1*K2*K3 + 608*K1*K3*K4 + 288*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1376*K2**4 - 32*K2**3*K6 - 368*K2**2*K3**2 - 16*K2**2*K4**2 + 1792*K2**2*K4 - 2974*K2**2 + 568*K2*K3*K5 + 16*K2*K4*K6 - 1520*K3**2 - 548*K4**2 - 200*K5**2 - 2*K6**2 + 3106 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}]] |
If K is slice | False |