Gauss code |
O1O2O3U4O5U2U3U1O4O6U5U6 |
R3 orbit |
{'O1O2O3U4O5U2U3U1O4O6U5U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U5O4O6U3U1U2O5U6 |
Gauss code of K* |
O1O2O3U4U5O6O5U3U1U2O4U6 |
Gauss code of -K* |
O1O2O3U4O5U2U3U1O6O4U6U5 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 0 -1 1 -2 1 1],[ 0 0 -1 1 -2 2 1],[ 1 1 0 1 0 1 1],[-1 -1 -1 0 -1 0 1],[ 2 2 0 1 0 1 0],[-1 -2 -1 0 -1 0 1],[-1 -1 -1 -1 0 -1 0]] |
Primitive based matrix |
[[ 0 1 1 1 0 -1 -2],[-1 0 1 0 -1 -1 -1],[-1 -1 0 -1 -1 -1 0],[-1 0 1 0 -2 -1 -1],[ 0 1 1 2 0 -1 -2],[ 1 1 1 1 1 0 0],[ 2 1 0 1 2 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,-1,0,1,2,-1,0,1,1,1,1,1,1,0,2,1,1,1,2,0] |
Phi over symmetry |
[-2,-1,0,1,1,1,0,2,0,1,1,1,1,1,1,1,1,2,-1,-1,0] |
Phi of -K |
[-2,-1,0,1,1,1,1,0,2,2,3,0,1,1,1,-1,0,0,0,-1,-1] |
Phi of K* |
[-1,-1,-1,0,1,2,-1,-1,0,1,3,0,-1,1,2,0,1,2,0,0,1] |
Phi of -K* |
[-2,-1,0,1,1,1,0,2,0,1,1,1,1,1,1,1,1,2,-1,-1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^2-2t |
Normalized Jones-Krushkal polynomial |
6z^2+27z+31 |
Enhanced Jones-Krushkal polynomial |
6w^3z^2+27w^2z+31w |
Inner characteristic polynomial |
t^6+18t^4+18t^2+1 |
Outer characteristic polynomial |
t^7+26t^5+35t^3+8t |
Flat arrow polynomial |
8*K1**3 - 6*K1**2 - 4*K1*K2 - 4*K1 + 3*K2 + 4 |
2-strand cable arrow polynomial |
-128*K1**6 + 512*K1**4*K2**3 - 1664*K1**4*K2**2 + 3136*K1**4*K2 - 3760*K1**4 - 512*K1**3*K2**2*K3 + 736*K1**3*K2*K3 - 1088*K1**3*K3 - 960*K1**2*K2**4 + 4768*K1**2*K2**3 - 11520*K1**2*K2**2 - 768*K1**2*K2*K4 + 10664*K1**2*K2 - 16*K1**2*K3**2 - 5004*K1**2 + 1696*K1*K2**3*K3 - 1824*K1*K2**2*K3 - 96*K1*K2**2*K5 + 7360*K1*K2*K3 + 184*K1*K3*K4 - 64*K2**6 + 128*K2**4*K4 - 2776*K2**4 - 496*K2**2*K3**2 - 48*K2**2*K4**2 + 1544*K2**2*K4 - 2504*K2**2 + 24*K2*K3*K5 - 1244*K3**2 - 154*K4**2 + 3872 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}]] |
If K is slice |
False |