Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,1,1,2,3,-2,1,0,0,1,1,0,0,1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1696'] |
Arrow polynomial of the knot is: 8*K1**3 - 10*K1**2 - 8*K1*K2 - 2*K1 + 5*K2 + 2*K3 + 6 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.543', '6.1656', '6.1696', '6.1770', '6.1772', '6.1794'] |
Outer characteristic polynomial of the knot is: t^7+23t^5+54t^3+9t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1696'] |
2-strand cable arrow polynomial of the knot is: -1024*K1**4*K2**2 + 1760*K1**4*K2 - 2528*K1**4 + 672*K1**3*K2*K3 - 416*K1**3*K3 - 1344*K1**2*K2**4 + 3840*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 11008*K1**2*K2**2 - 704*K1**2*K2*K4 + 9872*K1**2*K2 - 320*K1**2*K3**2 - 5488*K1**2 + 1952*K1*K2**3*K3 - 1792*K1*K2**2*K3 - 416*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 8544*K1*K2*K3 + 792*K1*K3*K4 + 104*K1*K4*K5 - 192*K2**6 + 320*K2**4*K4 - 2936*K2**4 - 64*K2**3*K6 - 832*K2**2*K3**2 - 128*K2**2*K4**2 + 2376*K2**2*K4 - 3404*K2**2 + 592*K2*K3*K5 + 48*K2*K4*K6 - 2004*K3**2 - 646*K4**2 - 156*K5**2 - 4*K6**2 + 4628 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1696'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.13366', 'vk6.13431', 'vk6.13622', 'vk6.13748', 'vk6.14158', 'vk6.14393', 'vk6.15624', 'vk6.16084', 'vk6.16463', 'vk6.16480', 'vk6.17639', 'vk6.22866', 'vk6.22899', 'vk6.24192', 'vk6.33121', 'vk6.33156', 'vk6.33220', 'vk6.33281', 'vk6.34847', 'vk6.34880', 'vk6.36443', 'vk6.42437', 'vk6.42454', 'vk6.43545', 'vk6.53550', 'vk6.53587', 'vk6.53620', 'vk6.53684', 'vk6.54714', 'vk6.55685', 'vk6.60239', 'vk6.64581'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U1U2O4O5U3U5O6U4U6 |
R3 orbit | {'O1O2O3U1U2O4O5U3U5O6U4U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U4U5O4U6U1O6O5U2U3 |
Gauss code of K* | O1O2U3O4O3U5U6U1O5O6U4U2 |
Gauss code of -K* | O1O2U1O3O4U3U2O5O6U4U5U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 0 0 0 1 1],[ 2 0 1 2 1 1 0],[ 0 -1 0 1 1 1 0],[ 0 -2 -1 0 2 1 1],[ 0 -1 -1 -2 0 0 1],[-1 -1 -1 -1 0 0 0],[-1 0 0 -1 -1 0 0]] |
Primitive based matrix | [[ 0 1 1 0 0 0 -2],[-1 0 0 0 -1 -1 0],[-1 0 0 -1 0 -1 -1],[ 0 0 1 0 1 1 -1],[ 0 1 0 -1 0 -2 -1],[ 0 1 1 -1 2 0 -2],[ 2 0 1 1 1 2 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-1,-1,0,0,0,2,0,0,1,1,0,1,0,1,1,-1,-1,1,2,1,2] |
Phi over symmetry | [-2,0,0,0,1,1,0,1,1,2,3,-2,1,0,0,1,1,0,0,1,0] |
Phi of -K | [-2,0,0,0,1,1,0,1,1,2,3,-2,1,0,0,1,1,0,0,1,0] |
Phi of K* | [-1,-1,0,0,0,2,0,0,0,1,2,0,1,0,3,-1,2,0,1,1,1] |
Phi of -K* | [-2,0,0,0,1,1,1,1,2,0,1,-1,-2,1,0,1,0,1,1,1,0] |
Symmetry type of based matrix | c |
u-polynomial | t^2-2t |
Normalized Jones-Krushkal polynomial | 4z^2+23z+31 |
Enhanced Jones-Krushkal polynomial | 4w^3z^2-2w^3z+25w^2z+31w |
Inner characteristic polynomial | t^6+17t^4+11t^2 |
Outer characteristic polynomial | t^7+23t^5+54t^3+9t |
Flat arrow polynomial | 8*K1**3 - 10*K1**2 - 8*K1*K2 - 2*K1 + 5*K2 + 2*K3 + 6 |
2-strand cable arrow polynomial | -1024*K1**4*K2**2 + 1760*K1**4*K2 - 2528*K1**4 + 672*K1**3*K2*K3 - 416*K1**3*K3 - 1344*K1**2*K2**4 + 3840*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 11008*K1**2*K2**2 - 704*K1**2*K2*K4 + 9872*K1**2*K2 - 320*K1**2*K3**2 - 5488*K1**2 + 1952*K1*K2**3*K3 - 1792*K1*K2**2*K3 - 416*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 8544*K1*K2*K3 + 792*K1*K3*K4 + 104*K1*K4*K5 - 192*K2**6 + 320*K2**4*K4 - 2936*K2**4 - 64*K2**3*K6 - 832*K2**2*K3**2 - 128*K2**2*K4**2 + 2376*K2**2*K4 - 3404*K2**2 + 592*K2*K3*K5 + 48*K2*K4*K6 - 2004*K3**2 - 646*K4**2 - 156*K5**2 - 4*K6**2 + 4628 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{3, 6}, {2, 5}, {1, 4}]] |
If K is slice | False |