Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,0,1,2,0,1,1,0,0,1,1,-1,-1,-2] |
Flat knots (up to 7 crossings) with same phi are :['6.1697'] |
Arrow polynomial of the knot is: 8*K1**3 - 2*K1**2 - 4*K1*K2 - 4*K1 + K2 + 2 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.313', '6.623', '6.1031', '6.1201', '6.1327', '6.1378', '6.1640', '6.1697', '6.1797', '6.1833'] |
Outer characteristic polynomial of the knot is: t^7+24t^5+64t^3+7t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1697'] |
2-strand cable arrow polynomial of the knot is: -32*K1**4 - 1984*K1**2*K2**4 + 2720*K1**2*K2**3 - 6528*K1**2*K2**2 - 256*K1**2*K2*K4 + 4848*K1**2*K2 - 3108*K1**2 + 1984*K1*K2**3*K3 - 832*K1*K2**2*K3 - 64*K1*K2**2*K5 + 4384*K1*K2*K3 + 208*K1*K3*K4 - 448*K2**6 + 544*K2**4*K4 - 2264*K2**4 - 528*K2**2*K3**2 - 208*K2**2*K4**2 + 1400*K2**2*K4 - 936*K2**2 + 48*K2*K3*K5 + 24*K2*K4*K6 - 860*K3**2 - 302*K4**2 + 2188 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1697'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.10504', 'vk6.10508', 'vk6.10569', 'vk6.10577', 'vk6.10758', 'vk6.10766', 'vk6.10881', 'vk6.10885', 'vk6.17684', 'vk6.17686', 'vk6.17733', 'vk6.17735', 'vk6.24294', 'vk6.24296', 'vk6.30189', 'vk6.30193', 'vk6.30256', 'vk6.30264', 'vk6.30385', 'vk6.30393', 'vk6.36522', 'vk6.36524', 'vk6.43628', 'vk6.43630', 'vk6.43734', 'vk6.43736', 'vk6.60366', 'vk6.60368', 'vk6.63449', 'vk6.63453', 'vk6.65425', 'vk6.65427'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U1U2O4O5U4U3O6U5U6 |
R3 orbit | {'O1O2O3U1U2O4O5U4U3O6U5U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U4U5O4U1U6O5O6U2U3 |
Gauss code of K* | O1O2U3O4O3U5U6U2O5O6U1U4 |
Gauss code of -K* | O1O2U1O3O4U2U4O5O6U3U5U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 0 1 -1 1 1],[ 2 0 1 2 0 1 0],[ 0 -1 0 1 0 1 0],[-1 -2 -1 0 0 2 1],[ 1 0 0 0 0 1 1],[-1 -1 -1 -2 -1 0 1],[-1 0 0 -1 -1 -1 0]] |
Primitive based matrix | [[ 0 1 1 1 0 -1 -2],[-1 0 2 1 -1 0 -2],[-1 -2 0 1 -1 -1 -1],[-1 -1 -1 0 0 -1 0],[ 0 1 1 0 0 0 -1],[ 1 0 1 1 0 0 0],[ 2 2 1 0 1 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-1,-1,-1,0,1,2,-2,-1,1,0,2,-1,1,1,1,0,1,0,0,1,0] |
Phi over symmetry | [-2,-1,0,1,1,1,0,1,0,1,2,0,1,1,0,0,1,1,-1,-1,-2] |
Phi of -K | [-2,-1,0,1,1,1,1,1,1,2,3,1,2,1,1,0,0,1,-2,-1,-1] |
Phi of K* | [-1,-1,-1,0,1,2,-2,1,0,1,2,1,0,2,1,1,1,3,1,1,1] |
Phi of -K* | [-2,-1,0,1,1,1,0,1,0,1,2,0,1,1,0,0,1,1,-1,-1,-2] |
Symmetry type of based matrix | c |
u-polynomial | t^2-2t |
Normalized Jones-Krushkal polynomial | 5z^2+18z+17 |
Enhanced Jones-Krushkal polynomial | -4w^4z^2+9w^3z^2-4w^3z+22w^2z+17w |
Inner characteristic polynomial | t^6+16t^4+19t^2 |
Outer characteristic polynomial | t^7+24t^5+64t^3+7t |
Flat arrow polynomial | 8*K1**3 - 2*K1**2 - 4*K1*K2 - 4*K1 + K2 + 2 |
2-strand cable arrow polynomial | -32*K1**4 - 1984*K1**2*K2**4 + 2720*K1**2*K2**3 - 6528*K1**2*K2**2 - 256*K1**2*K2*K4 + 4848*K1**2*K2 - 3108*K1**2 + 1984*K1*K2**3*K3 - 832*K1*K2**2*K3 - 64*K1*K2**2*K5 + 4384*K1*K2*K3 + 208*K1*K3*K4 - 448*K2**6 + 544*K2**4*K4 - 2264*K2**4 - 528*K2**2*K3**2 - 208*K2**2*K4**2 + 1400*K2**2*K4 - 936*K2**2 + 48*K2*K3*K5 + 24*K2*K4*K6 - 860*K3**2 - 302*K4**2 + 2188 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{2, 6}, {3, 5}, {1, 4}]] |
If K is slice | False |