| Gauss code |
O1O2O3U1U2O4O5U4U3O6U5U6 |
| R3 orbit |
{'O1O2O3U1U2O4O5U4U3O6U5U6'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3U4U5O4U1U6O5O6U2U3 |
| Gauss code of K* |
O1O2U3O4O3U5U6U2O5O6U1U4 |
| Gauss code of -K* |
O1O2U1O3O4U2U4O5O6U3U5U6 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -2 0 1 -1 1 1],[ 2 0 1 2 0 1 0],[ 0 -1 0 1 0 1 0],[-1 -2 -1 0 0 2 1],[ 1 0 0 0 0 1 1],[-1 -1 -1 -2 -1 0 1],[-1 0 0 -1 -1 -1 0]] |
| Primitive based matrix |
[[ 0 1 1 1 0 -1 -2],[-1 0 2 1 -1 0 -2],[-1 -2 0 1 -1 -1 -1],[-1 -1 -1 0 0 -1 0],[ 0 1 1 0 0 0 -1],[ 1 0 1 1 0 0 0],[ 2 2 1 0 1 0 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-1,-1,-1,0,1,2,-2,-1,1,0,2,-1,1,1,1,0,1,0,0,1,0] |
| Phi over symmetry |
[-2,-1,0,1,1,1,0,1,0,1,2,0,1,1,0,0,1,1,-1,-1,-2] |
| Phi of -K |
[-2,-1,0,1,1,1,1,1,1,2,3,1,2,1,1,0,0,1,-2,-1,-1] |
| Phi of K* |
[-1,-1,-1,0,1,2,-2,1,0,1,2,1,0,2,1,1,1,3,1,1,1] |
| Phi of -K* |
[-2,-1,0,1,1,1,0,1,0,1,2,0,1,1,0,0,1,1,-1,-1,-2] |
| Symmetry type of based matrix |
c |
| u-polynomial |
t^2-2t |
| Normalized Jones-Krushkal polynomial |
5z^2+18z+17 |
| Enhanced Jones-Krushkal polynomial |
-4w^4z^2+9w^3z^2-4w^3z+22w^2z+17w |
| Inner characteristic polynomial |
t^6+16t^4+19t^2 |
| Outer characteristic polynomial |
t^7+24t^5+64t^3+7t |
| Flat arrow polynomial |
8*K1**3 - 2*K1**2 - 4*K1*K2 - 4*K1 + K2 + 2 |
| 2-strand cable arrow polynomial |
-32*K1**4 - 1984*K1**2*K2**4 + 2720*K1**2*K2**3 - 6528*K1**2*K2**2 - 256*K1**2*K2*K4 + 4848*K1**2*K2 - 3108*K1**2 + 1984*K1*K2**3*K3 - 832*K1*K2**2*K3 - 64*K1*K2**2*K5 + 4384*K1*K2*K3 + 208*K1*K3*K4 - 448*K2**6 + 544*K2**4*K4 - 2264*K2**4 - 528*K2**2*K3**2 - 208*K2**2*K4**2 + 1400*K2**2*K4 - 936*K2**2 + 48*K2*K3*K5 + 24*K2*K4*K6 - 860*K3**2 - 302*K4**2 + 2188 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{2, 6}, {3, 5}, {1, 4}]] |
| If K is slice |
False |