| Gauss code |
O1O2O3U1U2O4O5U6U3O6U4U5 |
| R3 orbit |
{'O1O2O3U1U2O4O5U6U3O6U4U5'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3U4U5O6U1U6O4O5U2U3 |
| Gauss code of K* |
O1O2U1O3O4U5U6U2O5O6U3U4 |
| Gauss code of -K* |
O1O2U3O4O3U1U2O5O6U4U5U6 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -2 0 1 0 2 -1],[ 2 0 1 2 1 1 1],[ 0 -1 0 1 1 1 -1],[-1 -2 -1 0 0 1 -1],[ 0 -1 -1 0 0 1 0],[-2 -1 -1 -1 -1 0 -2],[ 1 -1 1 1 0 2 0]] |
| Primitive based matrix |
[[ 0 2 1 0 0 -1 -2],[-2 0 -1 -1 -1 -2 -1],[-1 1 0 0 -1 -1 -2],[ 0 1 0 0 -1 0 -1],[ 0 1 1 1 0 -1 -1],[ 1 2 1 0 1 0 -1],[ 2 1 2 1 1 1 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-2,-1,0,0,1,2,1,1,1,2,1,0,1,1,2,1,0,1,1,1,1] |
| Phi over symmetry |
[-2,-1,0,0,1,2,0,1,1,1,3,0,1,1,1,-1,0,1,1,1,0] |
| Phi of -K |
[-2,-1,0,0,1,2,0,1,1,1,3,0,1,1,1,-1,0,1,1,1,0] |
| Phi of K* |
[-2,-1,0,0,1,2,0,1,1,1,3,0,1,1,1,1,0,1,1,1,0] |
| Phi of -K* |
[-2,-1,0,0,1,2,1,1,1,2,1,0,1,1,2,-1,0,1,1,1,1] |
| Symmetry type of based matrix |
c |
| u-polynomial |
0 |
| Normalized Jones-Krushkal polynomial |
5z^2+22z+25 |
| Enhanced Jones-Krushkal polynomial |
5w^3z^2+22w^2z+25w |
| Inner characteristic polynomial |
t^6+19t^4+32t^2+4 |
| Outer characteristic polynomial |
t^7+29t^5+54t^3+8t |
| Flat arrow polynomial |
12*K1**3 - 8*K1**2 - 8*K1*K2 - 5*K1 + 4*K2 + K3 + 5 |
| 2-strand cable arrow polynomial |
-640*K1**4*K2**2 + 1152*K1**4*K2 - 1440*K1**4 + 256*K1**3*K2*K3 - 64*K1**3*K3 - 960*K1**2*K2**4 + 2912*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 7616*K1**2*K2**2 - 320*K1**2*K2*K4 + 6144*K1**2*K2 - 96*K1**2*K3**2 - 2880*K1**2 + 1408*K1*K2**3*K3 - 1536*K1*K2**2*K3 - 320*K1*K2**2*K5 + 4728*K1*K2*K3 + 208*K1*K3*K4 + 8*K1*K4*K5 - 224*K2**6 + 416*K2**4*K4 - 2704*K2**4 - 64*K2**3*K6 - 544*K2**2*K3**2 - 128*K2**2*K4**2 + 1832*K2**2*K4 - 1214*K2**2 + 200*K2*K3*K5 + 24*K2*K4*K6 - 708*K3**2 - 248*K4**2 - 20*K5**2 - 2*K6**2 + 2310 |
| Genus of based matrix |
0 |
| Fillings of based matrix |
[[{3, 6}, {1, 5}, {2, 4}]] |
| If K is slice |
True |