Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,0,1,1,1,3,0,1,1,1,-1,0,1,1,1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1699'] |
Arrow polynomial of the knot is: 12*K1**3 - 8*K1**2 - 8*K1*K2 - 5*K1 + 4*K2 + K3 + 5 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.324', '6.672', '6.953', '6.1196', '6.1215', '6.1216', '6.1699'] |
Outer characteristic polynomial of the knot is: t^7+29t^5+54t^3+8t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1699'] |
2-strand cable arrow polynomial of the knot is: -640*K1**4*K2**2 + 1152*K1**4*K2 - 1440*K1**4 + 256*K1**3*K2*K3 - 64*K1**3*K3 - 960*K1**2*K2**4 + 2912*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 7616*K1**2*K2**2 - 320*K1**2*K2*K4 + 6144*K1**2*K2 - 96*K1**2*K3**2 - 2880*K1**2 + 1408*K1*K2**3*K3 - 1536*K1*K2**2*K3 - 320*K1*K2**2*K5 + 4728*K1*K2*K3 + 208*K1*K3*K4 + 8*K1*K4*K5 - 224*K2**6 + 416*K2**4*K4 - 2704*K2**4 - 64*K2**3*K6 - 544*K2**2*K3**2 - 128*K2**2*K4**2 + 1832*K2**2*K4 - 1214*K2**2 + 200*K2*K3*K5 + 24*K2*K4*K6 - 708*K3**2 - 248*K4**2 - 20*K5**2 - 2*K6**2 + 2310 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1699'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.20117', 'vk6.20121', 'vk6.21395', 'vk6.21403', 'vk6.27203', 'vk6.27211', 'vk6.28883', 'vk6.28887', 'vk6.38617', 'vk6.38625', 'vk6.40805', 'vk6.40821', 'vk6.45489', 'vk6.45505', 'vk6.47221', 'vk6.47229', 'vk6.56934', 'vk6.56942', 'vk6.58072', 'vk6.58088', 'vk6.61486', 'vk6.61502', 'vk6.62627', 'vk6.62635', 'vk6.66644', 'vk6.66648', 'vk6.67431', 'vk6.67439', 'vk6.69280', 'vk6.69288', 'vk6.70015', 'vk6.70019'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U1U2O4O5U6U3O6U4U5 |
R3 orbit | {'O1O2O3U1U2O4O5U6U3O6U4U5'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U4U5O6U1U6O4O5U2U3 |
Gauss code of K* | O1O2U1O3O4U5U6U2O5O6U3U4 |
Gauss code of -K* | O1O2U3O4O3U1U2O5O6U4U5U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 0 1 0 2 -1],[ 2 0 1 2 1 1 1],[ 0 -1 0 1 1 1 -1],[-1 -2 -1 0 0 1 -1],[ 0 -1 -1 0 0 1 0],[-2 -1 -1 -1 -1 0 -2],[ 1 -1 1 1 0 2 0]] |
Primitive based matrix | [[ 0 2 1 0 0 -1 -2],[-2 0 -1 -1 -1 -2 -1],[-1 1 0 0 -1 -1 -2],[ 0 1 0 0 -1 0 -1],[ 0 1 1 1 0 -1 -1],[ 1 2 1 0 1 0 -1],[ 2 1 2 1 1 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,0,0,1,2,1,1,1,2,1,0,1,1,2,1,0,1,1,1,1] |
Phi over symmetry | [-2,-1,0,0,1,2,0,1,1,1,3,0,1,1,1,-1,0,1,1,1,0] |
Phi of -K | [-2,-1,0,0,1,2,0,1,1,1,3,0,1,1,1,-1,0,1,1,1,0] |
Phi of K* | [-2,-1,0,0,1,2,0,1,1,1,3,0,1,1,1,1,0,1,1,1,0] |
Phi of -K* | [-2,-1,0,0,1,2,1,1,1,2,1,0,1,1,2,-1,0,1,1,1,1] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 5z^2+22z+25 |
Enhanced Jones-Krushkal polynomial | 5w^3z^2+22w^2z+25w |
Inner characteristic polynomial | t^6+19t^4+32t^2+4 |
Outer characteristic polynomial | t^7+29t^5+54t^3+8t |
Flat arrow polynomial | 12*K1**3 - 8*K1**2 - 8*K1*K2 - 5*K1 + 4*K2 + K3 + 5 |
2-strand cable arrow polynomial | -640*K1**4*K2**2 + 1152*K1**4*K2 - 1440*K1**4 + 256*K1**3*K2*K3 - 64*K1**3*K3 - 960*K1**2*K2**4 + 2912*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 7616*K1**2*K2**2 - 320*K1**2*K2*K4 + 6144*K1**2*K2 - 96*K1**2*K3**2 - 2880*K1**2 + 1408*K1*K2**3*K3 - 1536*K1*K2**2*K3 - 320*K1*K2**2*K5 + 4728*K1*K2*K3 + 208*K1*K3*K4 + 8*K1*K4*K5 - 224*K2**6 + 416*K2**4*K4 - 2704*K2**4 - 64*K2**3*K6 - 544*K2**2*K3**2 - 128*K2**2*K4**2 + 1832*K2**2*K4 - 1214*K2**2 + 200*K2*K3*K5 + 24*K2*K4*K6 - 708*K3**2 - 248*K4**2 - 20*K5**2 - 2*K6**2 + 2310 |
Genus of based matrix | 0 |
Fillings of based matrix | [[{3, 6}, {1, 5}, {2, 4}]] |
If K is slice | True |