Gauss code |
O1O2O3U1U4O5O4U6U3O6U2U5 |
R3 orbit |
{'O1O2O3U1U4O5O4U6U3O6U2U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U2O5U1U5O6O4U6U3 |
Gauss code of K* |
O1O2U1O3O4U5U3U2O5O6U4U6 |
Gauss code of -K* |
O1O2U3O4O3U5U1O5O6U4U2U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 1 1 1 -1],[ 2 0 2 1 2 2 1],[ 0 -2 0 1 0 1 -1],[-1 -1 -1 0 -1 -1 -1],[-1 -2 0 1 0 1 -2],[-1 -2 -1 1 -1 0 -1],[ 1 -1 1 1 2 1 0]] |
Primitive based matrix |
[[ 0 1 1 1 0 -1 -2],[-1 0 1 1 0 -2 -2],[-1 -1 0 1 -1 -1 -2],[-1 -1 -1 0 -1 -1 -1],[ 0 0 1 1 0 -1 -2],[ 1 2 1 1 1 0 -1],[ 2 2 2 1 2 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,-1,0,1,2,-1,-1,0,2,2,-1,1,1,2,1,1,1,1,2,1] |
Phi over symmetry |
[-2,-1,0,1,1,1,0,0,1,1,2,0,0,1,1,1,0,0,-1,-1,-1] |
Phi of -K |
[-2,-1,0,1,1,1,0,0,1,1,2,0,0,1,1,1,0,0,-1,-1,-1] |
Phi of K* |
[-1,-1,-1,0,1,2,-1,-1,0,1,2,-1,0,1,1,1,0,1,0,0,0] |
Phi of -K* |
[-2,-1,0,1,1,1,1,2,1,2,2,1,1,1,2,1,1,0,-1,-1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^2-2t |
Normalized Jones-Krushkal polynomial |
2z^2+19z+31 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2+19w^2z+31w |
Inner characteristic polynomial |
t^6+26t^4+24t^2+1 |
Outer characteristic polynomial |
t^7+34t^5+41t^3+5t |
Flat arrow polynomial |
-14*K1**2 - 4*K1*K2 + 2*K1 + 7*K2 + 2*K3 + 8 |
2-strand cable arrow polynomial |
-256*K1**4*K2**2 + 1408*K1**4*K2 - 3392*K1**4 + 320*K1**3*K2*K3 + 32*K1**3*K3*K4 - 384*K1**3*K3 + 736*K1**2*K2**3 - 5632*K1**2*K2**2 - 192*K1**2*K2*K4 + 7688*K1**2*K2 - 288*K1**2*K3**2 - 32*K1**2*K4**2 - 3460*K1**2 - 896*K1*K2**2*K3 - 192*K1*K2*K3*K4 + 5224*K1*K2*K3 + 592*K1*K3*K4 + 88*K1*K4*K5 - 904*K2**4 - 240*K2**2*K3**2 - 48*K2**2*K4**2 + 1056*K2**2*K4 - 3052*K2**2 + 272*K2*K3*K5 + 32*K2*K4*K6 - 1328*K3**2 - 354*K4**2 - 68*K5**2 - 4*K6**2 + 3272 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {4, 5}, {1, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}]] |
If K is slice |
False |