Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,1,2,1,0,0,1,1,1,0,0,-1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1711'] |
Arrow polynomial of the knot is: -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.239', '6.428', '6.470', '6.556', '6.700', '6.910', '6.962', '6.1006', '6.1013', '6.1038', '6.1207', '6.1224', '6.1225', '6.1269', '6.1270', '6.1308', '6.1319', '6.1320', '6.1323', '6.1485', '6.1551', '6.1579', '6.1581', '6.1660', '6.1672', '6.1679', '6.1711', '6.1719', '6.1732', '6.1745', '6.1748', '6.1827', '6.1836', '6.1838', '6.1850', '6.1866'] |
Outer characteristic polynomial of the knot is: t^7+30t^5+43t^3+7t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1711'] |
2-strand cable arrow polynomial of the knot is: -384*K1**6 + 1248*K1**4*K2 - 5152*K1**4 + 384*K1**3*K2*K3 + 64*K1**3*K3*K4 - 928*K1**3*K3 - 2576*K1**2*K2**2 - 736*K1**2*K2*K4 + 8224*K1**2*K2 - 1568*K1**2*K3**2 - 160*K1**2*K3*K5 - 736*K1**2*K4**2 - 4640*K1**2 - 224*K1*K2**2*K3 - 32*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 6008*K1*K2*K3 + 3280*K1*K3*K4 + 896*K1*K4*K5 - 24*K2**4 - 48*K2**2*K3**2 - 112*K2**2*K4**2 + 720*K2**2*K4 - 4276*K2**2 + 256*K2*K3*K5 + 136*K2*K4*K6 + 24*K3**2*K6 - 2692*K3**2 - 1382*K4**2 - 284*K5**2 - 52*K6**2 + 4988 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1711'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4465', 'vk6.4562', 'vk6.5847', 'vk6.5976', 'vk6.7905', 'vk6.8025', 'vk6.9334', 'vk6.9455', 'vk6.13415', 'vk6.13510', 'vk6.13703', 'vk6.14073', 'vk6.15044', 'vk6.15166', 'vk6.17780', 'vk6.17813', 'vk6.18822', 'vk6.19422', 'vk6.19717', 'vk6.24327', 'vk6.25415', 'vk6.25448', 'vk6.26596', 'vk6.33269', 'vk6.33328', 'vk6.37549', 'vk6.44879', 'vk6.48654', 'vk6.50552', 'vk6.53661', 'vk6.55804', 'vk6.65474'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U1U4O5O4U6U3O6U5U2 |
R3 orbit | {'O1O2O3U1U4O5O4U6U3O6U5U2'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U2U4O5U1U5O6O4U6U3 |
Gauss code of K* | O1O2U1O3O4U5U4U2O5O6U3U6 |
Gauss code of -K* | O1O2U3O4O3U5U2O5O6U4U1U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 1 1 1 0 -1],[ 2 0 2 1 2 1 1],[-1 -2 0 0 0 0 -2],[-1 -1 0 0 -1 -1 -1],[-1 -2 0 1 0 0 -2],[ 0 -1 0 1 0 0 0],[ 1 -1 2 1 2 0 0]] |
Primitive based matrix | [[ 0 1 1 1 0 -1 -2],[-1 0 1 0 0 -2 -2],[-1 -1 0 0 -1 -1 -1],[-1 0 0 0 0 -2 -2],[ 0 0 1 0 0 0 -1],[ 1 2 1 2 0 0 -1],[ 2 2 1 2 1 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-1,-1,-1,0,1,2,-1,0,0,2,2,0,1,1,1,0,2,2,0,1,1] |
Phi over symmetry | [-2,-1,0,1,1,1,0,1,1,1,2,1,0,0,1,1,1,0,0,-1,0] |
Phi of -K | [-2,-1,0,1,1,1,0,1,1,1,2,1,0,0,1,1,1,0,0,-1,0] |
Phi of K* | [-1,-1,-1,0,1,2,-1,0,0,1,2,0,1,0,1,1,0,1,1,1,0] |
Phi of -K* | [-2,-1,0,1,1,1,1,1,1,2,2,0,1,2,2,1,0,0,-1,0,0] |
Symmetry type of based matrix | c |
u-polynomial | t^2-2t |
Normalized Jones-Krushkal polynomial | 2z^2+23z+39 |
Enhanced Jones-Krushkal polynomial | 2w^3z^2+23w^2z+39w |
Inner characteristic polynomial | t^6+22t^4+30t^2+4 |
Outer characteristic polynomial | t^7+30t^5+43t^3+7t |
Flat arrow polynomial | -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4 |
2-strand cable arrow polynomial | -384*K1**6 + 1248*K1**4*K2 - 5152*K1**4 + 384*K1**3*K2*K3 + 64*K1**3*K3*K4 - 928*K1**3*K3 - 2576*K1**2*K2**2 - 736*K1**2*K2*K4 + 8224*K1**2*K2 - 1568*K1**2*K3**2 - 160*K1**2*K3*K5 - 736*K1**2*K4**2 - 4640*K1**2 - 224*K1*K2**2*K3 - 32*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 6008*K1*K2*K3 + 3280*K1*K3*K4 + 896*K1*K4*K5 - 24*K2**4 - 48*K2**2*K3**2 - 112*K2**2*K4**2 + 720*K2**2*K4 - 4276*K2**2 + 256*K2*K3*K5 + 136*K2*K4*K6 + 24*K3**2*K6 - 2692*K3**2 - 1382*K4**2 - 284*K5**2 - 52*K6**2 + 4988 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}]] |
If K is slice | False |