Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1713

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,2,1,1,1,1,0,1,1,1,0,0,0,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1713']
Arrow polynomial of the knot is: -2*K1**2 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.6', '4.8', '6.780', '6.804', '6.914', '6.931', '6.946', '6.960', '6.1002', '6.1016', '6.1019', '6.1051', '6.1058', '6.1078', '6.1102', '6.1115', '6.1217', '6.1294', '6.1306', '6.1317', '6.1321', '6.1324', '6.1336', '6.1377', '6.1416', '6.1420', '6.1427', '6.1429', '6.1434', '6.1436', '6.1437', '6.1439', '6.1441', '6.1444', '6.1450', '6.1451', '6.1458', '6.1459', '6.1477', '6.1482', '6.1490', '6.1503', '6.1504', '6.1511', '6.1521', '6.1547', '6.1560', '6.1561', '6.1562', '6.1597', '6.1598', '6.1600', '6.1601', '6.1608', '6.1620', '6.1622', '6.1624', '6.1634', '6.1635', '6.1637', '6.1638', '6.1713', '6.1725', '6.1758', '6.1846', '6.1933', '6.1944', '6.1949', '6.1950', '6.1951']
Outer characteristic polynomial of the knot is: t^7+30t^5+54t^3+9t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1713']
2-strand cable arrow polynomial of the knot is: -256*K1**4*K2**2 + 224*K1**4*K2 - 384*K1**4 + 416*K1**3*K2*K3 - 256*K1**3*K3 + 2368*K1**2*K2**3 - 5120*K1**2*K2**2 - 896*K1**2*K2*K4 + 4152*K1**2*K2 - 256*K1**2*K3**2 - 2904*K1**2 - 672*K1*K2**2*K3 + 3896*K1*K2*K3 + 520*K1*K3*K4 - 1592*K2**4 + 1080*K2**2*K4 - 1192*K2**2 - 832*K3**2 - 278*K4**2 + 1980
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1713']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73977', 'vk6.73988', 'vk6.74494', 'vk6.74509', 'vk6.75952', 'vk6.75973', 'vk6.76710', 'vk6.76724', 'vk6.78944', 'vk6.78965', 'vk6.79488', 'vk6.79511', 'vk6.80472', 'vk6.80491', 'vk6.80950', 'vk6.80963', 'vk6.83015', 'vk6.83099', 'vk6.83657', 'vk6.83790', 'vk6.83943', 'vk6.84117', 'vk6.84266', 'vk6.85187', 'vk6.85540', 'vk6.85871', 'vk6.86259', 'vk6.86591', 'vk6.86748', 'vk6.87445', 'vk6.88311', 'vk6.89744']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1U4O5O6U2U3O4U6U5
R3 orbit {'O1O2O3U1U4O5O6U2U3O4U6U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5O6U1U2O5O4U6U3
Gauss code of K* O1O2U3O4O5U6U1U2O6O3U5U4
Gauss code of -K* O1O2U3O4O5U2U1O3O6U4U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 1 0 1 1],[ 2 0 1 2 0 2 2],[ 1 -1 0 1 0 2 1],[-1 -2 -1 0 -1 1 0],[ 0 0 0 1 0 0 1],[-1 -2 -2 -1 0 0 0],[-1 -2 -1 0 -1 0 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 0 -1 -1 -2],[-1 -1 0 0 0 -2 -2],[-1 0 0 0 -1 -1 -2],[ 0 1 0 1 0 0 0],[ 1 1 2 1 0 0 -1],[ 2 2 2 2 0 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,0,1,1,2,0,0,2,2,1,1,2,0,0,1]
Phi over symmetry [-2,-1,0,1,1,1,0,2,1,1,1,1,0,1,1,1,0,0,0,1,0]
Phi of -K [-2,-1,0,1,1,1,0,2,1,1,1,1,0,1,1,1,0,0,0,1,0]
Phi of K* [-1,-1,-1,0,1,2,-1,0,1,0,1,0,0,1,1,0,1,1,1,2,0]
Phi of -K* [-2,-1,0,1,1,1,1,0,2,2,2,0,1,1,2,1,1,0,0,0,1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 7z^2+24z+21
Enhanced Jones-Krushkal polynomial -2w^4z^2+9w^3z^2-2w^3z+26w^2z+21w
Inner characteristic polynomial t^6+22t^4+29t^2+1
Outer characteristic polynomial t^7+30t^5+54t^3+9t
Flat arrow polynomial -2*K1**2 + K2 + 2
2-strand cable arrow polynomial -256*K1**4*K2**2 + 224*K1**4*K2 - 384*K1**4 + 416*K1**3*K2*K3 - 256*K1**3*K3 + 2368*K1**2*K2**3 - 5120*K1**2*K2**2 - 896*K1**2*K2*K4 + 4152*K1**2*K2 - 256*K1**2*K3**2 - 2904*K1**2 - 672*K1*K2**2*K3 + 3896*K1*K2*K3 + 520*K1*K3*K4 - 1592*K2**4 + 1080*K2**2*K4 - 1192*K2**2 - 832*K3**2 - 278*K4**2 + 1980
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}]]
If K is slice False
Contact