Gauss code |
O1O2O3U1U4O5O6U3U6O4U2U5 |
R3 orbit |
{'O1O2O3U1U4O5O6U3U6O4U2U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U2O5U6U1O6O4U5U3 |
Gauss code of K* |
O1O2U3O4O5U6U4U1O6O3U5U2 |
Gauss code of -K* |
O1O2U3O4O5U4U1O3O6U5U2U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 0 0 1 1],[ 2 0 2 1 1 2 1],[ 0 -2 0 0 -1 1 1],[ 0 -1 0 0 -1 1 1],[ 0 -1 1 1 0 1 1],[-1 -2 -1 -1 -1 0 0],[-1 -1 -1 -1 -1 0 0]] |
Primitive based matrix |
[[ 0 1 1 0 0 0 -2],[-1 0 0 -1 -1 -1 -1],[-1 0 0 -1 -1 -1 -2],[ 0 1 1 0 1 1 -1],[ 0 1 1 -1 0 0 -1],[ 0 1 1 -1 0 0 -2],[ 2 1 2 1 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,0,0,0,2,0,1,1,1,1,1,1,1,2,-1,-1,1,0,1,2] |
Phi over symmetry |
[-2,0,0,0,1,1,0,1,1,1,2,0,1,0,0,1,0,0,0,0,0] |
Phi of -K |
[-2,0,0,0,1,1,0,1,1,1,2,0,1,0,0,1,0,0,0,0,0] |
Phi of K* |
[-1,-1,0,0,0,2,0,0,0,0,1,0,0,0,2,-1,0,0,1,1,1] |
Phi of -K* |
[-2,0,0,0,1,1,1,1,2,1,2,-1,0,1,1,1,1,1,1,1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^2-2t |
Normalized Jones-Krushkal polynomial |
z^2+18z+33 |
Enhanced Jones-Krushkal polynomial |
w^3z^2+18w^2z+33w |
Inner characteristic polynomial |
t^6+19t^4+12t^2 |
Outer characteristic polynomial |
t^7+25t^5+29t^3+4t |
Flat arrow polynomial |
4*K1**3 - 14*K1**2 - 8*K1*K2 + K1 + 7*K2 + 3*K3 + 8 |
2-strand cable arrow polynomial |
-192*K1**4*K2**2 + 896*K1**4*K2 - 3712*K1**4 + 320*K1**3*K2*K3 - 736*K1**3*K3 + 320*K1**2*K2**3 - 4064*K1**2*K2**2 - 352*K1**2*K2*K4 + 8504*K1**2*K2 - 448*K1**2*K3**2 - 4488*K1**2 + 96*K1*K2**3*K3 - 576*K1*K2**2*K3 - 32*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 5520*K1*K2*K3 + 800*K1*K3*K4 + 64*K1*K4*K5 - 32*K2**6 + 96*K2**4*K4 - 696*K2**4 - 32*K2**3*K6 - 352*K2**2*K3**2 - 128*K2**2*K4**2 + 1112*K2**2*K4 - 3970*K2**2 + 424*K2*K3*K5 + 104*K2*K4*K6 - 1688*K3**2 - 494*K4**2 - 112*K5**2 - 22*K6**2 + 4060 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {5}, {1, 4}, {3}]] |
If K is slice |
False |