Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1717

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,0,0,1,2,2,1,0,2,1,0,1,1,0,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1717']
Arrow polynomial of the knot is: -8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.235', '6.379', '6.411', '6.547', '6.811', '6.818', '6.823', '6.897', '6.898', '6.1008', '6.1053', '6.1109', '6.1110', '6.1130', '6.1222', '6.1239', '6.1303', '6.1307', '6.1342', '6.1491', '6.1495', '6.1496', '6.1519', '6.1592', '6.1593', '6.1642', '6.1652', '6.1653', '6.1671', '6.1673', '6.1717']
Outer characteristic polynomial of the knot is: t^7+29t^5+61t^3+10t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1717']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 352*K1**4*K2 - 3584*K1**4 + 128*K1**3*K2*K3 + 64*K1**3*K3*K4 - 192*K1**3*K3 + 384*K1**2*K2**3 - 5168*K1**2*K2**2 - 992*K1**2*K2*K4 + 8760*K1**2*K2 - 1184*K1**2*K3**2 - 32*K1**2*K3*K5 - 336*K1**2*K4**2 - 5536*K1**2 - 416*K1*K2**2*K3 - 32*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 7544*K1*K2*K3 + 2784*K1*K3*K4 + 496*K1*K4*K5 - 864*K2**4 - 96*K2**2*K3**2 - 16*K2**2*K4**2 + 1472*K2**2*K4 - 4596*K2**2 + 336*K2*K3*K5 + 32*K2*K4*K6 - 2820*K3**2 - 1384*K4**2 - 268*K5**2 - 12*K6**2 + 5366
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1717']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16940', 'vk6.17183', 'vk6.20548', 'vk6.21947', 'vk6.23336', 'vk6.23631', 'vk6.28002', 'vk6.29467', 'vk6.35384', 'vk6.35805', 'vk6.39414', 'vk6.41605', 'vk6.42857', 'vk6.43136', 'vk6.45990', 'vk6.47664', 'vk6.55091', 'vk6.55344', 'vk6.57428', 'vk6.58597', 'vk6.59489', 'vk6.59781', 'vk6.62095', 'vk6.63071', 'vk6.64940', 'vk6.65148', 'vk6.66968', 'vk6.67827', 'vk6.68229', 'vk6.68372', 'vk6.69579', 'vk6.70274']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1U4O5O6U5U2O4U3U6
R3 orbit {'O1O2O3U1U4O5O6U5U2O4U3U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U1O5U2U6O4O6U5U3
Gauss code of K* O1O2U3O4O5U6U2U4O6O3U1U5
Gauss code of -K* O1O2U3O4O5U1U5O3O6U2U4U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 1 0 -1 2],[ 2 0 1 2 1 0 2],[ 0 -1 0 0 0 0 2],[-1 -2 0 0 -1 0 1],[ 0 -1 0 1 0 -1 1],[ 1 0 0 0 1 0 1],[-2 -2 -2 -1 -1 -1 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 -1 -1 -2 -1 -2],[-1 1 0 -1 0 0 -2],[ 0 1 1 0 0 -1 -1],[ 0 2 0 0 0 0 -1],[ 1 1 0 1 0 0 0],[ 2 2 2 1 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,1,1,2,1,2,1,0,0,2,0,1,1,0,1,0]
Phi over symmetry [-2,-1,0,0,1,2,0,0,1,2,2,1,0,2,1,0,1,1,0,1,1]
Phi of -K [-2,-1,0,0,1,2,1,1,1,1,2,0,1,2,2,0,0,1,1,0,0]
Phi of K* [-2,-1,0,0,1,2,0,0,1,2,2,1,0,2,1,0,1,1,0,1,1]
Phi of -K* [-2,-1,0,0,1,2,0,1,1,2,2,0,1,0,1,0,0,2,1,1,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 3z^2+24z+37
Enhanced Jones-Krushkal polynomial 3w^3z^2+24w^2z+37w
Inner characteristic polynomial t^6+19t^4+35t^2+4
Outer characteristic polynomial t^7+29t^5+61t^3+10t
Flat arrow polynomial -8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5
2-strand cable arrow polynomial -64*K1**6 + 352*K1**4*K2 - 3584*K1**4 + 128*K1**3*K2*K3 + 64*K1**3*K3*K4 - 192*K1**3*K3 + 384*K1**2*K2**3 - 5168*K1**2*K2**2 - 992*K1**2*K2*K4 + 8760*K1**2*K2 - 1184*K1**2*K3**2 - 32*K1**2*K3*K5 - 336*K1**2*K4**2 - 5536*K1**2 - 416*K1*K2**2*K3 - 32*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 7544*K1*K2*K3 + 2784*K1*K3*K4 + 496*K1*K4*K5 - 864*K2**4 - 96*K2**2*K3**2 - 16*K2**2*K4**2 + 1472*K2**2*K4 - 4596*K2**2 + 336*K2*K3*K5 + 32*K2*K4*K6 - 2820*K3**2 - 1384*K4**2 - 268*K5**2 - 12*K6**2 + 5366
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{3, 6}, {2, 5}, {1, 4}], [{4, 6}, {3, 5}, {1, 2}], [{6}, {3, 5}, {4}, {1, 2}]]
If K is slice False
Contact