Gauss code |
O1O2O3U2U1O4O5U6U3O6U4U5 |
R3 orbit |
{'O1O2O3U2U1O4O5U6U3O6U4U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U5O6U1U6O4O5U3U2 |
Gauss code of K* |
O1O2U1O3O4U5U6U2O6O5U3U4 |
Gauss code of -K* |
O1O2U3O4O3U1U2O5O6U4U6U5 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -1 1 0 2 -1],[ 1 0 0 2 1 1 0],[ 1 0 0 1 1 1 0],[-1 -2 -1 0 0 1 -1],[ 0 -1 -1 0 0 1 0],[-2 -1 -1 -1 -1 0 -2],[ 1 0 0 1 0 2 0]] |
Primitive based matrix |
[[ 0 2 1 0 -1 -1 -1],[-2 0 -1 -1 -1 -1 -2],[-1 1 0 0 -1 -2 -1],[ 0 1 0 0 -1 -1 0],[ 1 1 1 1 0 0 0],[ 1 1 2 1 0 0 0],[ 1 2 1 0 0 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,1,1,1,1,1,1,1,2,0,1,2,1,1,1,0,0,0,0] |
Phi over symmetry |
[-2,-1,0,1,1,1,0,1,1,2,2,1,1,0,1,1,0,0,0,0,0] |
Phi of -K |
[-1,-1,-1,0,1,2,0,0,0,0,2,0,0,1,2,1,1,1,1,1,0] |
Phi of K* |
[-2,-1,0,1,1,1,0,1,1,2,2,1,1,0,1,1,0,0,0,0,0] |
Phi of -K* |
[-1,-1,-1,0,1,2,0,0,0,1,2,0,1,1,1,1,2,1,0,1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^2+2t |
Normalized Jones-Krushkal polynomial |
7z^2+24z+21 |
Enhanced Jones-Krushkal polynomial |
7w^3z^2+24w^2z+21w |
Inner characteristic polynomial |
t^6+16t^4+24t^2+4 |
Outer characteristic polynomial |
t^7+24t^5+41t^3+8t |
Flat arrow polynomial |
4*K1**3 - 2*K1**2 - 8*K1*K2 + K1 + K2 + 3*K3 + 2 |
2-strand cable arrow polynomial |
1280*K1**4*K2 - 4320*K1**4 + 768*K1**3*K2*K3 - 1024*K1**3*K3 + 1888*K1**2*K2**3 - 7728*K1**2*K2**2 - 1472*K1**2*K2*K4 + 7792*K1**2*K2 - 640*K1**2*K3**2 - 2124*K1**2 + 1088*K1*K2**3*K3 - 1504*K1*K2**2*K3 - 512*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 7008*K1*K2*K3 + 1488*K1*K3*K4 + 144*K1*K4*K5 - 32*K2**6 + 96*K2**4*K4 - 2040*K2**4 - 32*K2**3*K6 - 960*K2**2*K3**2 - 128*K2**2*K4**2 + 2168*K2**2*K4 - 2250*K2**2 + 864*K2*K3*K5 + 104*K2*K4*K6 - 1596*K3**2 - 770*K4**2 - 216*K5**2 - 22*K6**2 + 2904 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{6}, {5}, {1, 4}, {2, 3}]] |
If K is slice |
False |