Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1728

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,0,0,2,2,0,1,1,1,0,0,1,-1,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1728', '7.44695']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.568', '6.806', '6.1000', '6.1049', '6.1081', '6.1101', '6.1112', '6.1122', '6.1193', '6.1195', '6.1208', '6.1235', '6.1263', '6.1517', '6.1528', '6.1537', '6.1542', '6.1545', '6.1558', '6.1569', '6.1575', '6.1644', '6.1650', '6.1681', '6.1692', '6.1702', '6.1706', '6.1728', '6.1734', '6.1739', '6.1799', '6.1813', '6.1820', '6.1834', '6.1840', '6.1851', '6.1861', '6.1878']
Outer characteristic polynomial of the knot is: t^7+22t^5+28t^3+9t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1728']
2-strand cable arrow polynomial of the knot is: -1280*K1**6 - 1344*K1**4*K2**2 + 3648*K1**4*K2 - 4912*K1**4 + 1152*K1**3*K2*K3 - 928*K1**3*K3 - 448*K1**2*K2**4 + 1888*K1**2*K2**3 + 448*K1**2*K2**2*K4 - 7184*K1**2*K2**2 - 1280*K1**2*K2*K4 + 7136*K1**2*K2 - 528*K1**2*K3**2 - 208*K1**2*K4**2 - 932*K1**2 + 768*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 768*K1*K2**2*K3 - 448*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 5184*K1*K2*K3 - 96*K1*K2*K4*K5 + 1072*K1*K3*K4 + 296*K1*K4*K5 + 24*K1*K5*K6 - 32*K2**6 + 96*K2**4*K4 - 984*K2**4 - 32*K2**3*K6 - 352*K2**2*K3**2 - 112*K2**2*K4**2 + 912*K2**2*K4 - 1606*K2**2 + 344*K2*K3*K5 + 88*K2*K4*K6 - 916*K3**2 - 402*K4**2 - 112*K5**2 - 18*K6**2 + 2088
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1728']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.66', 'vk6.123', 'vk6.216', 'vk6.265', 'vk6.290', 'vk6.672', 'vk6.1226', 'vk6.1275', 'vk6.1362', 'vk6.1411', 'vk6.1442', 'vk6.1924', 'vk6.2376', 'vk6.2436', 'vk6.2932', 'vk6.2986', 'vk6.5747', 'vk6.5780', 'vk6.7812', 'vk6.7845', 'vk6.13292', 'vk6.13323', 'vk6.14783', 'vk6.14790', 'vk6.15937', 'vk6.15946', 'vk6.18046', 'vk6.24486', 'vk6.33041', 'vk6.33375', 'vk6.43916', 'vk6.50507']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2U3O4O5U6U4O6U1U5
R3 orbit {'O1O2O3U2U3O4O5U6U4O6U1U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U3O5U6U5O4O6U1U2
Gauss code of K* O1O2U1O3O4U3U5U6O5O6U2U4
Gauss code of -K* O1O2U3O4O3U1U4O5O6U5U6U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 1 0 2 -1],[ 1 0 -1 1 1 2 0],[ 1 1 0 1 0 0 1],[-1 -1 -1 0 0 0 -1],[ 0 -1 0 0 0 0 0],[-2 -2 0 0 0 0 -2],[ 1 0 -1 1 0 2 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 0 0 0 -2 -2],[-1 0 0 0 -1 -1 -1],[ 0 0 0 0 0 0 -1],[ 1 0 1 0 0 1 1],[ 1 2 1 0 -1 0 0],[ 1 2 1 1 -1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,0,0,0,2,2,0,1,1,1,0,0,1,-1,-1,0]
Phi over symmetry [-2,-1,0,1,1,1,0,0,0,2,2,0,1,1,1,0,0,1,-1,-1,0]
Phi of -K [-1,-1,-1,0,1,2,-1,-1,1,1,3,0,0,1,1,1,1,1,1,2,1]
Phi of K* [-2,-1,0,1,1,1,1,2,1,1,3,1,1,1,1,0,1,1,0,-1,-1]
Phi of -K* [-1,-1,-1,0,1,2,-1,0,0,1,2,1,0,1,0,1,1,2,0,0,0]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 5z^2+26z+33
Enhanced Jones-Krushkal polynomial 5w^3z^2+26w^2z+33w
Inner characteristic polynomial t^6+14t^4+15t^2+4
Outer characteristic polynomial t^7+22t^5+28t^3+9t
Flat arrow polynomial 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
2-strand cable arrow polynomial -1280*K1**6 - 1344*K1**4*K2**2 + 3648*K1**4*K2 - 4912*K1**4 + 1152*K1**3*K2*K3 - 928*K1**3*K3 - 448*K1**2*K2**4 + 1888*K1**2*K2**3 + 448*K1**2*K2**2*K4 - 7184*K1**2*K2**2 - 1280*K1**2*K2*K4 + 7136*K1**2*K2 - 528*K1**2*K3**2 - 208*K1**2*K4**2 - 932*K1**2 + 768*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 768*K1*K2**2*K3 - 448*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 5184*K1*K2*K3 - 96*K1*K2*K4*K5 + 1072*K1*K3*K4 + 296*K1*K4*K5 + 24*K1*K5*K6 - 32*K2**6 + 96*K2**4*K4 - 984*K2**4 - 32*K2**3*K6 - 352*K2**2*K3**2 - 112*K2**2*K4**2 + 912*K2**2*K4 - 1606*K2**2 + 344*K2*K3*K5 + 88*K2*K4*K6 - 916*K3**2 - 402*K4**2 - 112*K5**2 - 18*K6**2 + 2088
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {4, 5}, {1, 3}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}]]
If K is slice False
Contact