Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1731

Min(phi) over symmetries of the knot is: [-1,-1,-1,1,1,1,-1,-1,1,1,2,0,0,1,1,1,1,1,0,-1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1731', '7.39464']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+21t^5+25t^3+6t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1731']
2-strand cable arrow polynomial of the knot is: -768*K1**6 - 256*K1**4*K2**2 + 2144*K1**4*K2 - 6496*K1**4 + 224*K1**3*K2*K3 - 384*K1**3*K3 - 3040*K1**2*K2**2 + 8456*K1**2*K2 - 64*K1**2*K3**2 - 1592*K1**2 + 2248*K1*K2*K3 + 8*K1*K3*K4 - 64*K2**4 + 64*K2**2*K4 - 2672*K2**2 - 480*K3**2 - 16*K4**2 + 2686
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1731']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.10940', 'vk6.10965', 'vk6.10973', 'vk6.10996', 'vk6.12106', 'vk6.12131', 'vk6.12139', 'vk6.12162', 'vk6.13788', 'vk6.13795', 'vk6.14223', 'vk6.14230', 'vk6.14670', 'vk6.14679', 'vk6.14863', 'vk6.14870', 'vk6.15826', 'vk6.15833', 'vk6.31814', 'vk6.31837', 'vk6.33626', 'vk6.33635', 'vk6.33659', 'vk6.33666', 'vk6.51786', 'vk6.51793', 'vk6.52647', 'vk6.52656', 'vk6.53798', 'vk6.53821', 'vk6.54225', 'vk6.54248']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2U4O5O4U6U1O6U3U5
R3 orbit {'O1O2O3U2U4O5O4U6U1O6U3U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U1O5U3U5O6O4U6U2
Gauss code of K* O1O2U1O3O4U2U5U3O5O6U4U6
Gauss code of -K* O1O2U3O4O3U5U1O5O6U2U6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 1 1 1 -1],[ 1 0 0 1 1 0 1],[ 1 0 0 1 1 1 1],[-1 -1 -1 0 -1 0 -1],[-1 -1 -1 1 0 1 -2],[-1 0 -1 0 -1 0 -1],[ 1 -1 -1 1 2 1 0]]
Primitive based matrix [[ 0 1 1 1 -1 -1 -1],[-1 0 1 1 -1 -1 -2],[-1 -1 0 0 0 -1 -1],[-1 -1 0 0 -1 -1 -1],[ 1 1 0 1 0 0 1],[ 1 1 1 1 0 0 1],[ 1 2 1 1 -1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,1,1,1,-1,-1,1,1,2,0,0,1,1,1,1,1,0,-1,-1]
Phi over symmetry [-1,-1,-1,1,1,1,-1,-1,1,1,2,0,0,1,1,1,1,1,0,-1,-1]
Phi of -K [-1,-1,-1,1,1,1,-1,0,1,1,1,1,0,1,1,1,1,2,-1,-1,0]
Phi of K* [-1,-1,-1,1,1,1,-1,0,1,1,1,1,0,1,1,1,1,2,-1,-1,0]
Phi of -K* [-1,-1,-1,1,1,1,-1,-1,1,1,2,0,0,1,1,1,1,1,0,-1,-1]
Symmetry type of based matrix -
u-polynomial 0
Normalized Jones-Krushkal polynomial z^2+22z+41
Enhanced Jones-Krushkal polynomial w^3z^2+22w^2z+41w
Inner characteristic polynomial t^6+15t^4+17t^2+4
Outer characteristic polynomial t^7+21t^5+25t^3+6t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial -768*K1**6 - 256*K1**4*K2**2 + 2144*K1**4*K2 - 6496*K1**4 + 224*K1**3*K2*K3 - 384*K1**3*K3 - 3040*K1**2*K2**2 + 8456*K1**2*K2 - 64*K1**2*K3**2 - 1592*K1**2 + 2248*K1*K2*K3 + 8*K1*K3*K4 - 64*K2**4 + 64*K2**2*K4 - 2672*K2**2 - 480*K3**2 - 16*K4**2 + 2686
Genus of based matrix 0
Fillings of based matrix [[{4, 6}, {1, 5}, {2, 3}]]
If K is slice True
Contact