Min(phi) over symmetries of the knot is: [-2,0,1,1,1,1,1,1,2,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.1732'] |
Arrow polynomial of the knot is: -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.239', '6.428', '6.470', '6.556', '6.700', '6.910', '6.962', '6.1006', '6.1013', '6.1038', '6.1207', '6.1224', '6.1225', '6.1269', '6.1270', '6.1308', '6.1319', '6.1320', '6.1323', '6.1485', '6.1551', '6.1579', '6.1581', '6.1660', '6.1672', '6.1679', '6.1711', '6.1719', '6.1732', '6.1745', '6.1748', '6.1827', '6.1836', '6.1838', '6.1850', '6.1866'] |
Outer characteristic polynomial of the knot is: t^5+17t^3+24t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1732'] |
2-strand cable arrow polynomial of the knot is: -576*K1**6 + 1760*K1**4*K2 - 4032*K1**4 + 544*K1**3*K2*K3 - 1248*K1**3*K3 - 2512*K1**2*K2**2 - 960*K1**2*K2*K4 + 7624*K1**2*K2 - 960*K1**2*K3**2 - 448*K1**2*K4**2 - 5012*K1**2 - 384*K1*K2**2*K3 - 384*K1*K2*K3*K4 + 6056*K1*K2*K3 + 2640*K1*K3*K4 + 600*K1*K4*K5 - 56*K2**4 - 144*K2**2*K3**2 - 112*K2**2*K4**2 + 928*K2**2*K4 - 4332*K2**2 - 96*K2*K3**2*K4 + 200*K2*K3*K5 + 136*K2*K4*K6 + 24*K3**2*K6 - 2536*K3**2 - 1230*K4**2 - 156*K5**2 - 28*K6**2 + 4692 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1732'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4146', 'vk6.4177', 'vk6.5384', 'vk6.5415', 'vk6.7514', 'vk6.7537', 'vk6.9015', 'vk6.9046', 'vk6.12418', 'vk6.12451', 'vk6.13350', 'vk6.13575', 'vk6.13606', 'vk6.14262', 'vk6.14711', 'vk6.14734', 'vk6.15192', 'vk6.15865', 'vk6.15890', 'vk6.30831', 'vk6.30864', 'vk6.32015', 'vk6.32048', 'vk6.33076', 'vk6.33107', 'vk6.33848', 'vk6.34310', 'vk6.48488', 'vk6.50273', 'vk6.53538', 'vk6.53927', 'vk6.54255'] |
The R3 orbit of minmal crossing diagrams contains:
|
The diagrammatic symmetry type of this knot is c.
|
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is
|
The fillings (up to the first 10) associated to the algebraic genus:
|
Or click
here
to check the fillings
|