Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1740

Min(phi) over symmetries of the knot is: [-1,-1,-1,1,1,1,-1,-1,1,1,1,-1,1,2,2,1,0,1,1,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1740']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+25t^5+44t^3+14t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1740']
2-strand cable arrow polynomial of the knot is: -896*K1**4*K2**2 + 1696*K1**4*K2 - 2624*K1**4 + 288*K1**3*K2*K3 - 160*K1**3*K3 + 2624*K1**2*K2**3 - 10048*K1**2*K2**2 - 256*K1**2*K2*K4 + 9904*K1**2*K2 - 96*K1**2*K3**2 - 5096*K1**2 - 1408*K1*K2**2*K3 + 7168*K1*K2*K3 + 320*K1*K3*K4 - 1952*K2**4 + 1432*K2**2*K4 - 3216*K2**2 - 1416*K3**2 - 256*K4**2 + 3990
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1740']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11596', 'vk6.11605', 'vk6.11949', 'vk6.11956', 'vk6.12938', 'vk6.12947', 'vk6.13251', 'vk6.20425', 'vk6.20429', 'vk6.21790', 'vk6.27785', 'vk6.27793', 'vk6.29305', 'vk6.31391', 'vk6.31408', 'vk6.32565', 'vk6.32582', 'vk6.32951', 'vk6.39213', 'vk6.39221', 'vk6.41435', 'vk6.47558', 'vk6.53191', 'vk6.53204', 'vk6.53506', 'vk6.57286', 'vk6.57298', 'vk6.61956', 'vk6.61980', 'vk6.64284', 'vk6.64293', 'vk6.64496']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4U1O4O5U2U3O6U5U6
R3 orbit {'O1O2O3U4U1O4O5U2U3O6U5U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5O4U1U2O5O6U3U6
Gauss code of K* O1O2U3O4O3U5U1U2O6O5U6U4
Gauss code of -K* O1O2U1O3O4U2U5O6O5U3U4U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 1 -1 1 1],[ 1 0 0 1 1 2 0],[ 1 0 0 1 1 2 1],[-1 -1 -1 0 -1 1 1],[ 1 -1 -1 1 0 1 1],[-1 -2 -2 -1 -1 0 1],[-1 0 -1 -1 -1 -1 0]]
Primitive based matrix [[ 0 1 1 1 -1 -1 -1],[-1 0 1 1 -1 -1 -1],[-1 -1 0 1 -1 -2 -2],[-1 -1 -1 0 -1 0 -1],[ 1 1 1 1 0 -1 -1],[ 1 1 2 0 1 0 0],[ 1 1 2 1 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,1,1,1,-1,-1,1,1,1,-1,1,2,2,1,0,1,1,1,0]
Phi over symmetry [-1,-1,-1,1,1,1,-1,-1,1,1,1,-1,1,2,2,1,0,1,1,1,0]
Phi of -K [-1,-1,-1,1,1,1,-1,0,0,1,1,1,1,1,1,0,1,2,1,-1,-1]
Phi of K* [-1,-1,-1,1,1,1,-1,-1,1,1,2,-1,0,1,0,1,1,1,1,0,-1]
Phi of -K* [-1,-1,-1,1,1,1,-1,-1,1,1,1,0,0,1,2,1,1,2,-1,-1,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 6z^2+27z+31
Enhanced Jones-Krushkal polynomial 6w^3z^2+27w^2z+31w
Inner characteristic polynomial t^6+19t^4+18t^2+4
Outer characteristic polynomial t^7+25t^5+44t^3+14t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial -896*K1**4*K2**2 + 1696*K1**4*K2 - 2624*K1**4 + 288*K1**3*K2*K3 - 160*K1**3*K3 + 2624*K1**2*K2**3 - 10048*K1**2*K2**2 - 256*K1**2*K2*K4 + 9904*K1**2*K2 - 96*K1**2*K3**2 - 5096*K1**2 - 1408*K1*K2**2*K3 + 7168*K1*K2*K3 + 320*K1*K3*K4 - 1952*K2**4 + 1432*K2**2*K4 - 3216*K2**2 - 1416*K3**2 - 256*K4**2 + 3990
Genus of based matrix 0
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}]]
If K is slice True
Contact