Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1744

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,2,2,2,2,1,0,1,1,1,0,1,-1,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1744']
Arrow polynomial of the knot is: -14*K1**2 - 4*K1*K2 + 2*K1 + 7*K2 + 2*K3 + 8
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.665', '6.1301', '6.1514', '6.1646', '6.1669', '6.1709', '6.1710', '6.1744', '6.1776']
Outer characteristic polynomial of the knot is: t^7+30t^5+41t^3+9t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1744']
2-strand cable arrow polynomial of the knot is: -576*K1**6 - 448*K1**4*K2**2 + 2176*K1**4*K2 - 5840*K1**4 + 576*K1**3*K2*K3 + 64*K1**3*K3*K4 - 576*K1**3*K3 + 1248*K1**2*K2**3 - 8784*K1**2*K2**2 - 672*K1**2*K2*K4 + 11128*K1**2*K2 - 1040*K1**2*K3**2 - 272*K1**2*K4**2 - 3920*K1**2 - 1088*K1*K2**2*K3 - 256*K1*K2*K3*K4 + 8512*K1*K2*K3 + 1800*K1*K3*K4 + 312*K1*K4*K5 - 1816*K2**4 - 320*K2**2*K3**2 - 48*K2**2*K4**2 + 1968*K2**2*K4 - 4028*K2**2 + 424*K2*K3*K5 + 32*K2*K4*K6 - 2284*K3**2 - 902*K4**2 - 164*K5**2 - 4*K6**2 + 4796
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1744']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11261', 'vk6.11341', 'vk6.12522', 'vk6.12635', 'vk6.17608', 'vk6.18919', 'vk6.18997', 'vk6.19348', 'vk6.19643', 'vk6.24060', 'vk6.24154', 'vk6.25515', 'vk6.25616', 'vk6.26124', 'vk6.26544', 'vk6.30943', 'vk6.31068', 'vk6.32119', 'vk6.32240', 'vk6.36411', 'vk6.37660', 'vk6.37709', 'vk6.43510', 'vk6.44785', 'vk6.52027', 'vk6.52116', 'vk6.52938', 'vk6.56500', 'vk6.56648', 'vk6.65391', 'vk6.66128', 'vk6.66164']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4U1O4O5U6U3O6U2U5
R3 orbit {'O1O2O3U4U1O4O5U6U3O6U2U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U2O5U1U5O4O6U3U6
Gauss code of K* O1O2U1O3O4U5U3U2O6O5U6U4
Gauss code of -K* O1O2U3O4O3U1U5O6O5U4U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 1 -1 2 -1],[ 1 0 1 0 1 2 0],[ 0 -1 0 1 0 2 -1],[-1 0 -1 0 -1 0 -1],[ 1 -1 0 1 0 2 0],[-2 -2 -2 0 -2 0 -2],[ 1 0 1 1 0 2 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 0 -2 -2 -2 -2],[-1 0 0 -1 0 -1 -1],[ 0 2 1 0 -1 0 -1],[ 1 2 0 1 0 1 0],[ 1 2 1 0 -1 0 0],[ 1 2 1 1 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,0,2,2,2,2,1,0,1,1,1,0,1,-1,0,0]
Phi over symmetry [-2,-1,0,1,1,1,0,2,2,2,2,1,0,1,1,1,0,1,-1,0,0]
Phi of -K [-1,-1,-1,0,1,2,-1,0,0,2,1,0,1,1,1,0,1,1,0,0,1]
Phi of K* [-2,-1,0,1,1,1,1,0,1,1,1,0,1,1,2,0,1,0,0,0,-1]
Phi of -K* [-1,-1,-1,0,1,2,-1,0,0,1,2,0,1,0,2,1,1,2,1,2,0]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 3z^2+24z+37
Enhanced Jones-Krushkal polynomial 3w^3z^2+24w^2z+37w
Inner characteristic polynomial t^6+22t^4+24t^2+4
Outer characteristic polynomial t^7+30t^5+41t^3+9t
Flat arrow polynomial -14*K1**2 - 4*K1*K2 + 2*K1 + 7*K2 + 2*K3 + 8
2-strand cable arrow polynomial -576*K1**6 - 448*K1**4*K2**2 + 2176*K1**4*K2 - 5840*K1**4 + 576*K1**3*K2*K3 + 64*K1**3*K3*K4 - 576*K1**3*K3 + 1248*K1**2*K2**3 - 8784*K1**2*K2**2 - 672*K1**2*K2*K4 + 11128*K1**2*K2 - 1040*K1**2*K3**2 - 272*K1**2*K4**2 - 3920*K1**2 - 1088*K1*K2**2*K3 - 256*K1*K2*K3*K4 + 8512*K1*K2*K3 + 1800*K1*K3*K4 + 312*K1*K4*K5 - 1816*K2**4 - 320*K2**2*K3**2 - 48*K2**2*K4**2 + 1968*K2**2*K4 - 4028*K2**2 + 424*K2*K3*K5 + 32*K2*K4*K6 - 2284*K3**2 - 902*K4**2 - 164*K5**2 - 4*K6**2 + 4796
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}], [{6}, {5}, {4}, {1, 3}, {2}], [{6}, {5}, {4}, {2, 3}, {1}], [{6}, {5}, {4}, {3}, {1, 2}]]
If K is slice False
Contact