Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,1,2,1,1,1,1,1,1,0,0,-1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1747', '7.39601'] |
Arrow polynomial of the knot is: -10*K1**2 - 4*K1*K2 + 2*K1 + 5*K2 + 2*K3 + 6 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.425', '6.655', '6.755', '6.769', '6.792', '6.1240', '6.1494', '6.1522', '6.1534', '6.1587', '6.1707', '6.1746', '6.1747', '6.1786', '6.1814', '6.1828', '6.1835', '6.1854', '6.1870'] |
Outer characteristic polynomial of the knot is: t^7+24t^5+28t^3+4t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1116', '6.1747'] |
2-strand cable arrow polynomial of the knot is: -448*K1**6 - 512*K1**4*K2**2 + 2816*K1**4*K2 - 6304*K1**4 + 1248*K1**3*K2*K3 - 1632*K1**3*K3 + 1024*K1**2*K2**3 - 7824*K1**2*K2**2 - 928*K1**2*K2*K4 + 11432*K1**2*K2 - 1152*K1**2*K3**2 - 128*K1**2*K4**2 - 4316*K1**2 + 352*K1*K2**3*K3 - 640*K1*K2**2*K3 - 160*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 7816*K1*K2*K3 + 1288*K1*K3*K4 + 136*K1*K4*K5 - 712*K2**4 - 272*K2**2*K3**2 - 48*K2**2*K4**2 + 840*K2**2*K4 - 4092*K2**2 + 192*K2*K3*K5 + 32*K2*K4*K6 - 1872*K3**2 - 442*K4**2 - 52*K5**2 - 4*K6**2 + 4424 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1747'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4212', 'vk6.4293', 'vk6.5471', 'vk6.5584', 'vk6.7579', 'vk6.7673', 'vk6.9081', 'vk6.9162', 'vk6.11164', 'vk6.12246', 'vk6.12355', 'vk6.19370', 'vk6.19665', 'vk6.19777', 'vk6.26152', 'vk6.26210', 'vk6.26570', 'vk6.26655', 'vk6.30762', 'vk6.31963', 'vk6.38156', 'vk6.38198', 'vk6.44817', 'vk6.44939', 'vk6.48534', 'vk6.49229', 'vk6.49342', 'vk6.50321', 'vk6.52748', 'vk6.63594', 'vk6.66312', 'vk6.66354'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U4U2O4O5U6U1O6U3U5 |
R3 orbit | {'O1O2O3U4U2O4O5U6U1O6U3U5'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U4U1O5U3U5O4O6U2U6 |
Gauss code of K* | O1O2U1O3O4U2U5U3O6O5U6U4 |
Gauss code of -K* | O1O2U3O4O3U1U5O6O5U2U6U4 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 0 1 -1 2 -1],[ 1 0 1 1 0 1 1],[ 0 -1 0 0 0 1 0],[-1 -1 0 0 -1 1 -1],[ 1 0 0 1 0 2 0],[-2 -1 -1 -1 -2 0 -2],[ 1 -1 0 1 0 2 0]] |
Primitive based matrix | [[ 0 2 1 0 -1 -1 -1],[-2 0 -1 -1 -1 -2 -2],[-1 1 0 0 -1 -1 -1],[ 0 1 0 0 -1 0 0],[ 1 1 1 1 0 1 0],[ 1 2 1 0 -1 0 0],[ 1 2 1 0 0 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,0,1,1,1,1,1,1,2,2,0,1,1,1,1,0,0,-1,0,0] |
Phi over symmetry | [-2,-1,0,1,1,1,0,1,1,1,2,1,1,1,1,1,1,0,0,-1,0] |
Phi of -K | [-1,-1,-1,0,1,2,-1,0,0,1,2,0,1,1,1,1,1,1,1,1,0] |
Phi of K* | [-2,-1,0,1,1,1,0,1,1,1,2,1,1,1,1,1,1,0,0,-1,0] |
Phi of -K* | [-1,-1,-1,0,1,2,-1,0,0,1,2,0,1,1,1,0,1,2,0,1,1] |
Symmetry type of based matrix | c |
u-polynomial | -t^2+2t |
Normalized Jones-Krushkal polynomial | 3z^2+24z+37 |
Enhanced Jones-Krushkal polynomial | 3w^3z^2+24w^2z+37w |
Inner characteristic polynomial | t^6+16t^4+15t^2+1 |
Outer characteristic polynomial | t^7+24t^5+28t^3+4t |
Flat arrow polynomial | -10*K1**2 - 4*K1*K2 + 2*K1 + 5*K2 + 2*K3 + 6 |
2-strand cable arrow polynomial | -448*K1**6 - 512*K1**4*K2**2 + 2816*K1**4*K2 - 6304*K1**4 + 1248*K1**3*K2*K3 - 1632*K1**3*K3 + 1024*K1**2*K2**3 - 7824*K1**2*K2**2 - 928*K1**2*K2*K4 + 11432*K1**2*K2 - 1152*K1**2*K3**2 - 128*K1**2*K4**2 - 4316*K1**2 + 352*K1*K2**3*K3 - 640*K1*K2**2*K3 - 160*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 7816*K1*K2*K3 + 1288*K1*K3*K4 + 136*K1*K4*K5 - 712*K2**4 - 272*K2**2*K3**2 - 48*K2**2*K4**2 + 840*K2**2*K4 - 4092*K2**2 + 192*K2*K3*K5 + 32*K2*K4*K6 - 1872*K3**2 - 442*K4**2 - 52*K5**2 - 4*K6**2 + 4424 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {3, 5}, {2, 4}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}]] |
If K is slice | False |