| Gauss code |
O1O2O3O4O5U1O6U5U3U6U4U2 |
| R3 orbit |
{'O1O2O3O4O5U1O6U5U3U6U4U2', 'O1O2O3O4O5U1U4O6U3U5U6U2', 'O1O2O3O4O5U1U4U2O6U5U3U6'} |
| R3 orbit length |
3 |
| Gauss code of -K |
O1O2O3O4O5U4U2U6U3U1O6U5 |
| Gauss code of K* |
O1O2O3O4O5U6U5U2U4U1O6U3 |
| Gauss code of -K* |
O1O2O3O4O5U3O6U5U2U4U1U6 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
2 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -4 1 -1 2 0 2],[ 4 0 4 2 3 1 2],[-1 -4 0 -2 1 -1 2],[ 1 -2 2 0 2 0 2],[-2 -3 -1 -2 0 -1 1],[ 0 -1 1 0 1 0 1],[-2 -2 -2 -2 -1 -1 0]] |
| Primitive based matrix |
[[ 0 2 2 1 0 -1 -4],[-2 0 1 -1 -1 -2 -3],[-2 -1 0 -2 -1 -2 -2],[-1 1 2 0 -1 -2 -4],[ 0 1 1 1 0 0 -1],[ 1 2 2 2 0 0 -2],[ 4 3 2 4 1 2 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-2,-2,-1,0,1,4,-1,1,1,2,3,2,1,2,2,1,2,4,0,1,2] |
| Phi over symmetry |
[-4,-1,0,1,2,2,1,3,1,3,4,1,0,1,1,0,1,1,0,-1,-1] |
| Phi of -K |
[-4,-1,0,1,2,2,1,3,1,3,4,1,0,1,1,0,1,1,0,-1,-1] |
| Phi of K* |
[-2,-2,-1,0,1,4,-1,-1,1,1,4,0,1,1,3,0,0,1,1,3,1] |
| Phi of -K* |
[-4,-1,0,1,2,2,2,1,4,2,3,0,2,2,2,1,1,1,2,1,-1] |
| Symmetry type of based matrix |
c |
| u-polynomial |
t^4-2t^2 |
| Normalized Jones-Krushkal polynomial |
8z+17 |
| Enhanced Jones-Krushkal polynomial |
8w^2z+17w |
| Inner characteristic polynomial |
t^6+55t^4 |
| Outer characteristic polynomial |
t^7+81t^5+44t^3 |
| Flat arrow polynomial |
-2*K1**2 - 2*K1*K3 + 2*K2 + K4 + 2 |
| 2-strand cable arrow polynomial |
-256*K1**4 - 160*K1**2*K2**2 + 472*K1**2*K2 - 176*K1**2*K3**2 - 528*K1**2 + 32*K1*K2*K3**3 + 808*K1*K2*K3 + 240*K1*K3*K4 + 16*K1*K4*K5 + 16*K1*K5*K6 - 24*K2**4 - 128*K2**2*K3**2 + 48*K2**2*K4 - 8*K2**2*K6**2 - 480*K2**2 + 88*K2*K3*K5 + 24*K2*K4*K6 + 8*K2*K6*K8 - 48*K3**4 + 40*K3**2*K6 - 384*K3**2 - 116*K4**2 - 32*K5**2 - 32*K6**2 - 2*K8**2 + 580 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {4, 5}, {2, 3}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {4}, {2, 3}, {1}]] |
| If K is slice |
False |