Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1752

Min(phi) over symmetries of the knot is: [-1,-1,-1,1,1,1,-1,0,0,1,1,0,0,0,1,1,0,0,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1752', '7.28624', '7.33032', '7.45964']
Arrow polynomial of the knot is: 8*K1**3 - 8*K1**2 - 8*K1*K2 - 2*K1 + 4*K2 + 2*K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.414', '6.594', '6.608', '6.790', '6.1233', '6.1285', '6.1293', '6.1513', '6.1752', '6.1787', '6.1810', '6.1818', '6.1867', '6.1868', '6.1923']
Outer characteristic polynomial of the knot is: t^7+31t^5+63t^3+13t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1752', '7.28624', '7.33032']
2-strand cable arrow polynomial of the knot is: -1024*K1**6 - 2048*K1**4*K2**2 + 3840*K1**4*K2 - 4640*K1**4 + 1728*K1**3*K2*K3 - 736*K1**3*K3 - 1344*K1**2*K2**4 + 3456*K1**2*K2**3 + 512*K1**2*K2**2*K4 - 8640*K1**2*K2**2 - 1024*K1**2*K2*K4 + 6512*K1**2*K2 - 448*K1**2*K3**2 - 96*K1**2*K4**2 + 72*K1**2 + 1472*K1*K2**3*K3 - 1376*K1*K2**2*K3 - 416*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 4576*K1*K2*K3 + 368*K1*K3*K4 + 80*K1*K4*K5 - 192*K2**6 + 320*K2**4*K4 - 1952*K2**4 - 64*K2**3*K6 - 384*K2**2*K3**2 - 128*K2**2*K4**2 + 1264*K2**2*K4 - 508*K2**2 + 176*K2*K3*K5 + 48*K2*K4*K6 - 404*K3**2 - 120*K4**2 - 20*K5**2 - 4*K6**2 + 1334
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1752']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.72', 'vk6.74', 'vk6.129', 'vk6.133', 'vk6.226', 'vk6.230', 'vk6.273', 'vk6.275', 'vk6.389', 'vk6.393', 'vk6.809', 'vk6.817', 'vk6.1277', 'vk6.1281', 'vk6.1368', 'vk6.1372', 'vk6.1415', 'vk6.1417', 'vk6.1554', 'vk6.1562', 'vk6.2686', 'vk6.2694', 'vk6.2948', 'vk6.2952', 'vk6.14837', 'vk6.14841', 'vk6.15995', 'vk6.15999', 'vk6.25957', 'vk6.25965', 'vk6.33343', 'vk6.33359']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4U5O4O5U6U3O6U1U2
R3 orbit {'O1O2O3U4U5O4O5U6U3O6U1U2'}
R3 orbit length 1
Gauss code of -K O1O2O3U2U3O4U1U4O5O6U5U6
Gauss code of K* O1O2U1O3O4U3U4U2O5O6U5U6
Gauss code of -K* O1O2U3O4O3U5U6O5O6U4U1U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 1 1 -1 1 -1],[ 1 0 1 1 0 2 0],[-1 -1 0 1 -2 0 -2],[-1 -1 -1 0 -2 0 -1],[ 1 0 2 2 0 1 0],[-1 -2 0 0 -1 0 -2],[ 1 0 2 1 0 2 0]]
Primitive based matrix [[ 0 1 1 1 -1 -1 -1],[-1 0 1 0 -1 -2 -2],[-1 -1 0 0 -1 -1 -2],[-1 0 0 0 -2 -2 -1],[ 1 1 1 2 0 0 0],[ 1 2 1 2 0 0 0],[ 1 2 2 1 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,1,1,1,-1,0,1,2,2,0,1,1,2,2,2,1,0,0,0]
Phi over symmetry [-1,-1,-1,1,1,1,-1,0,0,1,1,0,0,0,1,1,0,0,0,0,0]
Phi of -K [-1,-1,-1,1,1,1,0,0,0,0,1,0,0,1,0,1,0,1,0,-1,0]
Phi of K* [-1,-1,-1,1,1,1,-1,0,0,1,1,0,0,0,1,1,0,0,0,0,0]
Phi of -K* [-1,-1,-1,1,1,1,0,0,1,1,2,0,1,2,2,2,2,1,-1,0,0]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 4z^2+21z+27
Enhanced Jones-Krushkal polynomial 4w^3z^2+21w^2z+27w
Inner characteristic polynomial t^6+25t^4+49t^2+9
Outer characteristic polynomial t^7+31t^5+63t^3+13t
Flat arrow polynomial 8*K1**3 - 8*K1**2 - 8*K1*K2 - 2*K1 + 4*K2 + 2*K3 + 5
2-strand cable arrow polynomial -1024*K1**6 - 2048*K1**4*K2**2 + 3840*K1**4*K2 - 4640*K1**4 + 1728*K1**3*K2*K3 - 736*K1**3*K3 - 1344*K1**2*K2**4 + 3456*K1**2*K2**3 + 512*K1**2*K2**2*K4 - 8640*K1**2*K2**2 - 1024*K1**2*K2*K4 + 6512*K1**2*K2 - 448*K1**2*K3**2 - 96*K1**2*K4**2 + 72*K1**2 + 1472*K1*K2**3*K3 - 1376*K1*K2**2*K3 - 416*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 4576*K1*K2*K3 + 368*K1*K3*K4 + 80*K1*K4*K5 - 192*K2**6 + 320*K2**4*K4 - 1952*K2**4 - 64*K2**3*K6 - 384*K2**2*K3**2 - 128*K2**2*K4**2 + 1264*K2**2*K4 - 508*K2**2 + 176*K2*K3*K5 + 48*K2*K4*K6 - 404*K3**2 - 120*K4**2 - 20*K5**2 - 4*K6**2 + 1334
Genus of based matrix 0
Fillings of based matrix [[{3, 6}, {4, 5}, {1, 2}], [{5, 6}, {3, 4}, {1, 2}]]
If K is slice True
Contact