Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1757

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,2,1,2,3,0,0,1,2,2,1,0,0,-1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1757']
Arrow polynomial of the knot is: -2*K1**2 - 4*K1*K2 + 2*K1 + K2 + 2*K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.120', '6.213', '6.216', '6.320', '6.322', '6.615', '6.617', '6.891', '6.951', '6.955', '6.1001', '6.1012', '6.1022', '6.1043', '6.1047', '6.1063', '6.1074', '6.1249', '6.1544', '6.1546', '6.1555', '6.1573', '6.1574', '6.1585', '6.1756', '6.1757', '6.1762', '6.1802', '6.1803', '6.1824', '6.1881', '6.1935']
Outer characteristic polynomial of the knot is: t^7+38t^5+108t^3+12t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1757']
2-strand cable arrow polynomial of the knot is: -256*K1**4*K2**2 + 224*K1**4*K2 - 1232*K1**4 + 768*K1**3*K2*K3 - 672*K1**3*K3 + 288*K1**2*K2**3 - 3168*K1**2*K2**2 - 928*K1**2*K2*K4 + 5208*K1**2*K2 - 400*K1**2*K3**2 - 3812*K1**2 + 64*K1*K2**3*K3 - 384*K1*K2**2*K3 - 64*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 5032*K1*K2*K3 + 960*K1*K3*K4 + 32*K1*K4*K5 - 200*K2**4 - 112*K2**2*K3**2 - 48*K2**2*K4**2 + 672*K2**2*K4 - 2900*K2**2 + 112*K2*K3*K5 + 32*K2*K4*K6 - 1576*K3**2 - 438*K4**2 - 20*K5**2 - 4*K6**2 + 2884
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1757']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16923', 'vk6.17166', 'vk6.20227', 'vk6.21521', 'vk6.23313', 'vk6.23609', 'vk6.27433', 'vk6.29042', 'vk6.35350', 'vk6.35775', 'vk6.38850', 'vk6.41040', 'vk6.42835', 'vk6.43115', 'vk6.45607', 'vk6.47364', 'vk6.55077', 'vk6.55329', 'vk6.57063', 'vk6.58190', 'vk6.59466', 'vk6.59759', 'vk6.61587', 'vk6.62765', 'vk6.64916', 'vk6.65128', 'vk6.66688', 'vk6.67530', 'vk6.68217', 'vk6.68361', 'vk6.69336', 'vk6.70087']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4U5O4O6U2U1O5U3U6
R3 orbit {'O1O2O3U4U5O4O6U2U1O5U3U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U1O5U3U2O4O6U5U6
Gauss code of K* O1O2U3O4O5U2U1U4O6O3U6U5
Gauss code of -K* O1O2U3O4O5U1U6O3O6U2U5U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 1 -1 0 2],[ 1 0 0 1 1 1 2],[ 1 0 0 0 1 2 1],[-1 -1 0 0 -2 0 0],[ 1 -1 -1 2 0 0 3],[ 0 -1 -2 0 0 0 2],[-2 -2 -1 0 -3 -2 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 0 -2 -1 -2 -3],[-1 0 0 0 0 -1 -2],[ 0 2 0 0 -2 -1 0],[ 1 1 0 2 0 0 1],[ 1 2 1 1 0 0 1],[ 1 3 2 0 -1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,0,2,1,2,3,0,0,1,2,2,1,0,0,-1,-1]
Phi over symmetry [-2,-1,0,1,1,1,0,2,1,2,3,0,0,1,2,2,1,0,0,-1,-1]
Phi of -K [-1,-1,-1,0,1,2,-1,0,-1,2,2,1,1,0,0,0,1,1,1,0,1]
Phi of K* [-2,-1,0,1,1,1,1,0,0,1,2,1,0,1,2,1,0,-1,-1,-1,0]
Phi of -K* [-1,-1,-1,0,1,2,-1,-1,0,2,3,0,1,1,2,2,0,1,0,2,0]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 5z^2+22z+25
Enhanced Jones-Krushkal polynomial -2w^4z^2+7w^3z^2-2w^3z+24w^2z+25w
Inner characteristic polynomial t^6+30t^4+79t^2+4
Outer characteristic polynomial t^7+38t^5+108t^3+12t
Flat arrow polynomial -2*K1**2 - 4*K1*K2 + 2*K1 + K2 + 2*K3 + 2
2-strand cable arrow polynomial -256*K1**4*K2**2 + 224*K1**4*K2 - 1232*K1**4 + 768*K1**3*K2*K3 - 672*K1**3*K3 + 288*K1**2*K2**3 - 3168*K1**2*K2**2 - 928*K1**2*K2*K4 + 5208*K1**2*K2 - 400*K1**2*K3**2 - 3812*K1**2 + 64*K1*K2**3*K3 - 384*K1*K2**2*K3 - 64*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 5032*K1*K2*K3 + 960*K1*K3*K4 + 32*K1*K4*K5 - 200*K2**4 - 112*K2**2*K3**2 - 48*K2**2*K4**2 + 672*K2**2*K4 - 2900*K2**2 + 112*K2*K3*K5 + 32*K2*K4*K6 - 1576*K3**2 - 438*K4**2 - 20*K5**2 - 4*K6**2 + 2884
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{5, 6}, {3, 4}, {1, 2}]]
If K is slice False
Contact