Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1761

Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,1,2,0,1,0,-1,1,0,1,0,1,1,1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1761']
Arrow polynomial of the knot is: 4*K1**3 - 10*K1**2 - 4*K1*K2 - K1 + 5*K2 + K3 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.241', '6.341', '6.542', '6.567', '6.699', '6.713', '6.771', '6.791', '6.1025', '6.1039', '6.1041', '6.1072', '6.1077', '6.1121', '6.1123', '6.1499', '6.1502', '6.1531', '6.1645', '6.1648', '6.1726', '6.1727', '6.1761', '6.1784', '6.1807', '6.1823', '6.1832', '6.1869', '6.1873', '6.1874']
Outer characteristic polynomial of the knot is: t^7+29t^5+76t^3+9t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1761']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 704*K1**4*K2 - 4112*K1**4 + 448*K1**3*K2*K3 - 1216*K1**3*K3 - 192*K1**2*K2**4 + 416*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 5808*K1**2*K2**2 - 576*K1**2*K2*K4 + 10816*K1**2*K2 - 624*K1**2*K3**2 - 48*K1**2*K4**2 - 5728*K1**2 + 256*K1*K2**3*K3 - 192*K1*K2**2*K3 - 32*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 7136*K1*K2*K3 + 736*K1*K3*K4 + 64*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 984*K2**4 - 160*K2**2*K3**2 - 48*K2**2*K4**2 + 944*K2**2*K4 - 4310*K2**2 + 160*K2*K3*K5 + 16*K2*K4*K6 - 1912*K3**2 - 358*K4**2 - 40*K5**2 - 2*K6**2 + 4708
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1761']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16938', 'vk6.17181', 'vk6.20546', 'vk6.21945', 'vk6.23338', 'vk6.23633', 'vk6.28004', 'vk6.29469', 'vk6.35382', 'vk6.35803', 'vk6.39412', 'vk6.41603', 'vk6.42859', 'vk6.43138', 'vk6.45992', 'vk6.47666', 'vk6.55089', 'vk6.55342', 'vk6.57426', 'vk6.58595', 'vk6.59491', 'vk6.59783', 'vk6.62097', 'vk6.63073', 'vk6.64938', 'vk6.65146', 'vk6.66966', 'vk6.67825', 'vk6.68231', 'vk6.68374', 'vk6.69581', 'vk6.70276']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4U5O4O6U3U1O5U2U6
R3 orbit {'O1O2O3U4U5O4O6U3U1O5U2U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U2O5U3U1O4O6U5U6
Gauss code of K* O1O2U3O4O5U2U4U1O6O3U6U5
Gauss code of -K* O1O2U3O4O5U1U6O3O6U5U2U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 0 -1 0 2],[ 1 0 0 0 1 1 2],[ 0 0 0 1 -1 0 1],[ 0 0 -1 0 0 1 0],[ 1 -1 1 0 0 0 3],[ 0 -1 0 -1 0 0 2],[-2 -2 -1 0 -3 -2 0]]
Primitive based matrix [[ 0 2 0 0 0 -1 -1],[-2 0 0 -1 -2 -2 -3],[ 0 0 0 -1 1 0 0],[ 0 1 1 0 0 0 -1],[ 0 2 -1 0 0 -1 0],[ 1 2 0 0 1 0 1],[ 1 3 0 1 0 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,0,0,0,1,1,0,1,2,2,3,1,-1,0,0,0,0,1,1,0,-1]
Phi over symmetry [-2,0,0,0,1,1,0,1,2,0,1,0,-1,1,0,1,0,1,1,1,-1]
Phi of -K [-1,-1,0,0,0,2,-1,0,1,1,1,1,0,1,0,0,1,0,-1,1,2]
Phi of K* [-2,0,0,0,1,1,0,1,2,0,1,0,-1,1,0,1,0,1,1,1,-1]
Phi of -K* [-1,-1,0,0,0,2,-1,0,0,1,3,0,1,0,2,1,-1,0,0,2,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 2z^2+21z+35
Enhanced Jones-Krushkal polynomial 2w^3z^2+21w^2z+35w
Inner characteristic polynomial t^6+23t^4+55t^2+4
Outer characteristic polynomial t^7+29t^5+76t^3+9t
Flat arrow polynomial 4*K1**3 - 10*K1**2 - 4*K1*K2 - K1 + 5*K2 + K3 + 6
2-strand cable arrow polynomial -64*K1**6 + 704*K1**4*K2 - 4112*K1**4 + 448*K1**3*K2*K3 - 1216*K1**3*K3 - 192*K1**2*K2**4 + 416*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 5808*K1**2*K2**2 - 576*K1**2*K2*K4 + 10816*K1**2*K2 - 624*K1**2*K3**2 - 48*K1**2*K4**2 - 5728*K1**2 + 256*K1*K2**3*K3 - 192*K1*K2**2*K3 - 32*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 7136*K1*K2*K3 + 736*K1*K3*K4 + 64*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 984*K2**4 - 160*K2**2*K3**2 - 48*K2**2*K4**2 + 944*K2**2*K4 - 4310*K2**2 + 160*K2*K3*K5 + 16*K2*K4*K6 - 1912*K3**2 - 358*K4**2 - 40*K5**2 - 2*K6**2 + 4708
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {1, 5}, {2, 4}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {2, 4}, {1, 3}], [{6}, {3, 5}, {2, 4}, {1}]]
If K is slice False
Contact