Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1762

Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,1,2,0,1,0,-1,1,1,0,1,0,1,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1762']
Arrow polynomial of the knot is: -2*K1**2 - 4*K1*K2 + 2*K1 + K2 + 2*K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.120', '6.213', '6.216', '6.320', '6.322', '6.615', '6.617', '6.891', '6.951', '6.955', '6.1001', '6.1012', '6.1022', '6.1043', '6.1047', '6.1063', '6.1074', '6.1249', '6.1544', '6.1546', '6.1555', '6.1573', '6.1574', '6.1585', '6.1756', '6.1757', '6.1762', '6.1802', '6.1803', '6.1824', '6.1881', '6.1935']
Outer characteristic polynomial of the knot is: t^7+27t^5+73t^3+18t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1762']
2-strand cable arrow polynomial of the knot is: 224*K1**4*K2 - 1680*K1**4 + 352*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1056*K1**3*K3 + 96*K1**2*K2**2*K4 - 2384*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 544*K1**2*K2*K4 + 6824*K1**2*K2 - 624*K1**2*K3**2 - 176*K1**2*K4**2 - 5716*K1**2 + 64*K1*K2**3*K3 - 576*K1*K2**2*K3 - 160*K1*K2**2*K5 - 544*K1*K2*K3*K4 + 6144*K1*K2*K3 + 1504*K1*K3*K4 + 352*K1*K4*K5 - 104*K2**4 - 160*K2**2*K3**2 - 48*K2**2*K4**2 + 1232*K2**2*K4 - 4660*K2**2 + 344*K2*K3*K5 + 32*K2*K4*K6 - 2344*K3**2 - 942*K4**2 - 132*K5**2 - 4*K6**2 + 4492
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1762']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16972', 'vk6.16978', 'vk6.17215', 'vk6.17221', 'vk6.20876', 'vk6.20881', 'vk6.22285', 'vk6.22288', 'vk6.23375', 'vk6.23677', 'vk6.23687', 'vk6.28351', 'vk6.35433', 'vk6.35867', 'vk6.35873', 'vk6.39979', 'vk6.39992', 'vk6.42051', 'vk6.43174', 'vk6.43176', 'vk6.46519', 'vk6.46532', 'vk6.55125', 'vk6.55139', 'vk6.55384', 'vk6.57675', 'vk6.57696', 'vk6.58873', 'vk6.59839', 'vk6.59865', 'vk6.68402', 'vk6.69739']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4U5O4O6U3U2O5U1U6
R3 orbit {'O1O2O3U4U5O4O6U3U2O5U1U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U3O5U2U1O4O6U5U6
Gauss code of K* O1O2U3O4O5U4U2U1O6O3U6U5
Gauss code of -K* O1O2U3O4O5U1U6O3O6U5U4U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 0 -1 0 2],[ 1 0 1 1 0 0 2],[ 0 -1 0 0 0 0 1],[ 0 -1 0 0 0 1 0],[ 1 0 0 0 0 0 3],[ 0 0 0 -1 0 0 2],[-2 -2 -1 0 -3 -2 0]]
Primitive based matrix [[ 0 2 0 0 0 -1 -1],[-2 0 0 -1 -2 -2 -3],[ 0 0 0 0 1 -1 0],[ 0 1 0 0 0 -1 0],[ 0 2 -1 0 0 0 0],[ 1 2 1 1 0 0 0],[ 1 3 0 0 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,0,0,0,1,1,0,1,2,2,3,0,-1,1,0,0,1,0,0,0,0]
Phi over symmetry [-2,0,0,0,1,1,0,1,2,0,1,0,-1,1,1,0,1,0,1,0,0]
Phi of -K [-1,-1,0,0,0,2,0,0,0,1,1,1,1,1,0,0,-1,2,0,1,0]
Phi of K* [-2,0,0,0,1,1,0,1,2,0,1,0,-1,1,1,0,1,0,1,0,0]
Phi of -K* [-1,-1,0,0,0,2,0,0,0,0,3,0,1,1,2,-1,0,2,0,0,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 5z^2+24z+29
Enhanced Jones-Krushkal polynomial 5w^3z^2-2w^3z+26w^2z+29w
Inner characteristic polynomial t^6+21t^4+50t^2+9
Outer characteristic polynomial t^7+27t^5+73t^3+18t
Flat arrow polynomial -2*K1**2 - 4*K1*K2 + 2*K1 + K2 + 2*K3 + 2
2-strand cable arrow polynomial 224*K1**4*K2 - 1680*K1**4 + 352*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1056*K1**3*K3 + 96*K1**2*K2**2*K4 - 2384*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 544*K1**2*K2*K4 + 6824*K1**2*K2 - 624*K1**2*K3**2 - 176*K1**2*K4**2 - 5716*K1**2 + 64*K1*K2**3*K3 - 576*K1*K2**2*K3 - 160*K1*K2**2*K5 - 544*K1*K2*K3*K4 + 6144*K1*K2*K3 + 1504*K1*K3*K4 + 352*K1*K4*K5 - 104*K2**4 - 160*K2**2*K3**2 - 48*K2**2*K4**2 + 1232*K2**2*K4 - 4660*K2**2 + 344*K2*K3*K5 + 32*K2*K4*K6 - 2344*K3**2 - 942*K4**2 - 132*K5**2 - 4*K6**2 + 4492
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}]]
If K is slice False
Contact