Gauss code |
O1O2O3U4U1O5O4U5U3O6U2U6 |
R3 orbit |
{'O1O2O3U4U1O5O4U5U3O6U2U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U2O4U1U5O6O5U3U6 |
Gauss code of K* |
O1O2U3O4O3U5U4U2O6O5U1U6 |
Gauss code of -K* |
O1O2U1O3O4U5U4O6O5U3U2U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 0 1 0 -1 1],[ 1 0 1 0 1 -1 1],[ 0 -1 0 0 1 -1 1],[-1 0 0 0 0 -1 0],[ 0 -1 -1 0 0 -1 1],[ 1 1 1 1 1 0 0],[-1 -1 -1 0 -1 0 0]] |
Primitive based matrix |
[[ 0 1 1 0 0 -1 -1],[-1 0 0 0 0 0 -1],[-1 0 0 -1 -1 -1 0],[ 0 0 1 0 1 -1 -1],[ 0 0 1 -1 0 -1 -1],[ 1 0 1 1 1 0 -1],[ 1 1 0 1 1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,0,0,1,1,0,0,0,0,1,1,1,1,0,-1,1,1,1,1,1] |
Phi over symmetry |
[-1,-1,0,0,1,1,-1,0,0,1,2,0,0,2,1,-1,1,0,1,0,0] |
Phi of -K |
[-1,-1,0,0,1,1,-1,0,0,1,2,0,0,2,1,-1,1,0,1,0,0] |
Phi of K* |
[-1,-1,0,0,1,1,0,0,0,1,2,1,1,2,1,-1,0,0,0,0,-1] |
Phi of -K* |
[-1,-1,0,0,1,1,-1,1,1,0,1,1,1,1,0,-1,0,1,0,1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
2z^2+23z+39 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2+23w^2z+39w |
Inner characteristic polynomial |
t^6+10t^4+8t^2+1 |
Outer characteristic polynomial |
t^7+14t^5+24t^3+7t |
Flat arrow polynomial |
4*K1**3 - 12*K1**2 - 8*K1*K2 + K1 + 6*K2 + 3*K3 + 7 |
2-strand cable arrow polynomial |
-448*K1**6 - 640*K1**4*K2**2 + 2016*K1**4*K2 - 5856*K1**4 + 1056*K1**3*K2*K3 + 64*K1**3*K3*K4 - 704*K1**3*K3 - 256*K1**2*K2**4 + 1600*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 8464*K1**2*K2**2 - 1056*K1**2*K2*K4 + 11504*K1**2*K2 - 1152*K1**2*K3**2 - 64*K1**2*K3*K5 - 240*K1**2*K4**2 - 4604*K1**2 + 576*K1*K2**3*K3 - 1536*K1*K2**2*K3 - 288*K1*K2**2*K5 - 288*K1*K2*K3*K4 + 8664*K1*K2*K3 + 2032*K1*K3*K4 + 360*K1*K4*K5 - 32*K2**6 + 96*K2**4*K4 - 1280*K2**4 - 32*K2**3*K6 - 336*K2**2*K3**2 - 128*K2**2*K4**2 + 1672*K2**2*K4 - 4498*K2**2 + 328*K2*K3*K5 + 104*K2*K4*K6 - 2388*K3**2 - 900*K4**2 - 136*K5**2 - 22*K6**2 + 5018 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {1, 5}, {3, 4}], [{3, 6}, {4, 5}, {1, 2}], [{5, 6}, {2, 4}, {1, 3}], [{6}, {1, 5}, {3, 4}, {2}]] |
If K is slice |
False |