Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1767

Min(phi) over symmetries of the knot is: [-1,-1,0,0,1,1,0,0,0,1,2,1,1,0,1,0,0,0,1,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1767']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+14t^5+25t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1767']
2-strand cable arrow polynomial of the knot is: -448*K1**6 - 256*K1**4*K2**2 + 2080*K1**4*K2 - 6304*K1**4 + 480*K1**3*K2*K3 - 768*K1**3*K3 + 512*K1**2*K2**3 - 5664*K1**2*K2**2 - 640*K1**2*K2*K4 + 11000*K1**2*K2 - 128*K1**2*K3**2 - 4012*K1**2 - 608*K1*K2**2*K3 + 5624*K1*K2*K3 + 552*K1*K3*K4 - 544*K2**4 + 928*K2**2*K4 - 4296*K2**2 - 1420*K3**2 - 368*K4**2 + 4278
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1767']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11269', 'vk6.11349', 'vk6.12530', 'vk6.12643', 'vk6.17620', 'vk6.18907', 'vk6.18985', 'vk6.19350', 'vk6.19645', 'vk6.24076', 'vk6.24170', 'vk6.25503', 'vk6.25609', 'vk6.26122', 'vk6.26542', 'vk6.30951', 'vk6.31076', 'vk6.32127', 'vk6.32248', 'vk6.36423', 'vk6.37644', 'vk6.37697', 'vk6.43522', 'vk6.44783', 'vk6.52019', 'vk6.52112', 'vk6.52933', 'vk6.56486', 'vk6.56650', 'vk6.65403', 'vk6.66116', 'vk6.66152']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4U1O5O4U6U3O6U5U2
R3 orbit {'O1O2O3U4U1O5O4U6U3O6U5U2'}
R3 orbit length 1
Gauss code of -K O1O2O3U2U4O5U1U5O6O4U3U6
Gauss code of K* O1O2U1O3O4U5U4U2O6O5U3U6
Gauss code of -K* O1O2U3O4O3U5U2O6O5U4U1U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 1 1 0 0 -1],[ 1 0 1 0 1 0 0],[-1 -1 0 0 0 0 -2],[-1 0 0 0 -1 -1 -1],[ 0 -1 0 1 0 0 -1],[ 0 0 0 1 0 0 0],[ 1 0 2 1 1 0 0]]
Primitive based matrix [[ 0 1 1 0 0 -1 -1],[-1 0 0 0 0 -1 -2],[-1 0 0 -1 -1 0 -1],[ 0 0 1 0 0 0 0],[ 0 0 1 0 0 -1 -1],[ 1 1 0 0 1 0 0],[ 1 2 1 0 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,0,0,1,1,0,0,0,1,2,1,1,0,1,0,0,0,1,1,0]
Phi over symmetry [-1,-1,0,0,1,1,0,0,0,1,2,1,1,0,1,0,0,0,1,1,0]
Phi of -K [-1,-1,0,0,1,1,0,0,1,0,1,0,1,1,2,0,1,0,1,0,0]
Phi of K* [-1,-1,0,0,1,1,0,0,0,1,2,1,1,0,1,0,0,0,1,1,0]
Phi of -K* [-1,-1,0,0,1,1,0,0,1,0,1,0,1,1,2,0,1,0,1,0,0]
Symmetry type of based matrix +
u-polynomial 0
Normalized Jones-Krushkal polynomial 3z^2+24z+37
Enhanced Jones-Krushkal polynomial 3w^3z^2+24w^2z+37w
Inner characteristic polynomial t^6+10t^4+15t^2+1
Outer characteristic polynomial t^7+14t^5+25t^3+5t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial -448*K1**6 - 256*K1**4*K2**2 + 2080*K1**4*K2 - 6304*K1**4 + 480*K1**3*K2*K3 - 768*K1**3*K3 + 512*K1**2*K2**3 - 5664*K1**2*K2**2 - 640*K1**2*K2*K4 + 11000*K1**2*K2 - 128*K1**2*K3**2 - 4012*K1**2 - 608*K1*K2**2*K3 + 5624*K1*K2*K3 + 552*K1*K3*K4 - 544*K2**4 + 928*K2**2*K4 - 4296*K2**2 - 1420*K3**2 - 368*K4**2 + 4278
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}]]
If K is slice False
Contact