Gauss code |
O1O2O3O4O5U1O6U5U4U6U2U3 |
R3 orbit |
{'O1O2O3O4O5U1O6U5U4U6U2U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U3U4U6U2U1O6U5 |
Gauss code of K* |
O1O2O3O4O5U6U4U5U2U1O6U3 |
Gauss code of -K* |
O1O2O3O4O5U3O6U5U4U1U2U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
True |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 0 2 0 0 2],[ 4 0 3 4 2 1 2],[ 0 -3 0 1 -1 -1 2],[-2 -4 -1 0 -1 -1 2],[ 0 -2 1 1 0 0 2],[ 0 -1 1 1 0 0 1],[-2 -2 -2 -2 -2 -1 0]] |
Primitive based matrix |
[[ 0 2 2 0 0 0 -4],[-2 0 2 -1 -1 -1 -4],[-2 -2 0 -1 -2 -2 -2],[ 0 1 1 0 1 0 -1],[ 0 1 2 -1 0 -1 -3],[ 0 1 2 0 1 0 -2],[ 4 4 2 1 3 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,0,0,0,4,-2,1,1,1,4,1,2,2,2,-1,0,1,1,3,2] |
Phi over symmetry |
[-4,0,0,0,2,2,1,2,3,2,4,0,1,1,1,1,2,1,2,1,-2] |
Phi of -K |
[-4,0,0,0,2,2,1,2,3,2,4,1,1,1,0,0,1,0,1,1,-2] |
Phi of K* |
[-2,-2,0,0,0,4,-2,0,0,1,4,1,1,1,2,-1,-1,1,0,2,3] |
Phi of -K* |
[-4,0,0,0,2,2,1,2,3,2,4,0,1,1,1,1,2,1,2,1,-2] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-2t^2 |
Normalized Jones-Krushkal polynomial |
3z^3+17z^2+29z+15 |
Enhanced Jones-Krushkal polynomial |
3w^4z^3+17w^3z^2+29w^2z+15 |
Inner characteristic polynomial |
t^6+52t^4+27t^2+1 |
Outer characteristic polynomial |
t^7+76t^5+131t^3+25t |
Flat arrow polynomial |
-8*K1**4 + 4*K1**2*K2 + 4*K1**2 + 1 |
2-strand cable arrow polynomial |
-128*K2**8 + 128*K2**6*K4 - 1088*K2**6 - 32*K2**4*K4**2 + 1216*K2**4*K4 - 5088*K2**4 - 128*K2**3*K6 - 336*K2**2*K4**2 + 3888*K2**2*K4 + 1504*K2**2 + 64*K2*K4*K6 - 632*K4**2 + 630 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {3, 5}, {2, 4}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
False |