Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1772

Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,1,1,2,2,0,1,0,1,0,1,0,0,-1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1772']
Arrow polynomial of the knot is: 8*K1**3 - 10*K1**2 - 8*K1*K2 - 2*K1 + 5*K2 + 2*K3 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.543', '6.1656', '6.1696', '6.1770', '6.1772', '6.1794']
Outer characteristic polynomial of the knot is: t^7+21t^5+64t^3+13t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1772']
2-strand cable arrow polynomial of the knot is: -192*K1**4*K2**2 + 768*K1**4*K2 - 1760*K1**4 + 224*K1**3*K2*K3 - 256*K1**3*K3 + 1536*K1**2*K2**3 - 7920*K1**2*K2**2 - 448*K1**2*K2*K4 + 9288*K1**2*K2 - 128*K1**2*K3**2 - 5684*K1**2 + 448*K1*K2**3*K3 - 1312*K1*K2**2*K3 - 160*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 6840*K1*K2*K3 + 496*K1*K3*K4 + 48*K1*K4*K5 - 192*K2**6 + 320*K2**4*K4 - 2312*K2**4 - 64*K2**3*K6 - 416*K2**2*K3**2 - 128*K2**2*K4**2 + 2096*K2**2*K4 - 3540*K2**2 + 288*K2*K3*K5 + 48*K2*K4*K6 - 1532*K3**2 - 478*K4**2 - 64*K5**2 - 4*K6**2 + 4252
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1772']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11275', 'vk6.11355', 'vk6.12538', 'vk6.12651', 'vk6.18357', 'vk6.18697', 'vk6.24801', 'vk6.25260', 'vk6.30958', 'vk6.31084', 'vk6.32135', 'vk6.32256', 'vk6.36991', 'vk6.37443', 'vk6.44171', 'vk6.44492', 'vk6.52043', 'vk6.52128', 'vk6.52884', 'vk6.52949', 'vk6.56141', 'vk6.56369', 'vk6.60662', 'vk6.61009', 'vk6.63662', 'vk6.63709', 'vk6.64092', 'vk6.64139', 'vk6.65805', 'vk6.66059', 'vk6.68801', 'vk6.69011']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4U2O5O4U6U1O6U5U3
R3 orbit {'O1O2O3U4U2O5O4U6U1O6U5U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U4O5U3U5O6O4U2U6
Gauss code of K* O1O2U1O3O4U2U5U4O6O5U3U6
Gauss code of -K* O1O2U3O4O3U5U2O6O5U1U6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 2 0 0 -1],[ 1 0 1 2 0 -1 1],[ 0 -1 0 0 0 -1 0],[-2 -2 0 0 -1 -1 -2],[ 0 0 0 1 0 0 -1],[ 0 1 1 1 0 0 0],[ 1 -1 0 2 1 0 0]]
Primitive based matrix [[ 0 2 0 0 0 -1 -1],[-2 0 0 -1 -1 -2 -2],[ 0 0 0 0 -1 0 -1],[ 0 1 0 0 0 -1 0],[ 0 1 1 0 0 0 1],[ 1 2 0 1 0 0 -1],[ 1 2 1 0 -1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,0,0,0,1,1,0,1,1,2,2,0,1,0,1,0,1,0,0,-1,1]
Phi over symmetry [-2,0,0,0,1,1,0,1,1,2,2,0,1,0,1,0,1,0,0,-1,1]
Phi of -K [-1,-1,0,0,0,2,-1,0,1,2,1,1,0,1,1,0,1,2,0,1,1]
Phi of K* [-2,0,0,0,1,1,1,1,2,1,1,0,0,0,1,1,1,2,1,0,-1]
Phi of -K* [-1,-1,0,0,0,2,-1,0,0,1,2,-1,1,0,2,1,0,1,0,0,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 4z^2+23z+31
Enhanced Jones-Krushkal polynomial 4w^3z^2-2w^3z+25w^2z+31w
Inner characteristic polynomial t^6+15t^4+35t^2+4
Outer characteristic polynomial t^7+21t^5+64t^3+13t
Flat arrow polynomial 8*K1**3 - 10*K1**2 - 8*K1*K2 - 2*K1 + 5*K2 + 2*K3 + 6
2-strand cable arrow polynomial -192*K1**4*K2**2 + 768*K1**4*K2 - 1760*K1**4 + 224*K1**3*K2*K3 - 256*K1**3*K3 + 1536*K1**2*K2**3 - 7920*K1**2*K2**2 - 448*K1**2*K2*K4 + 9288*K1**2*K2 - 128*K1**2*K3**2 - 5684*K1**2 + 448*K1*K2**3*K3 - 1312*K1*K2**2*K3 - 160*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 6840*K1*K2*K3 + 496*K1*K3*K4 + 48*K1*K4*K5 - 192*K2**6 + 320*K2**4*K4 - 2312*K2**4 - 64*K2**3*K6 - 416*K2**2*K3**2 - 128*K2**2*K4**2 + 2096*K2**2*K4 - 3540*K2**2 + 288*K2*K3*K5 + 48*K2*K4*K6 - 1532*K3**2 - 478*K4**2 - 64*K5**2 - 4*K6**2 + 4252
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}], [{6}, {5}, {4}, {1, 3}, {2}]]
If K is slice False
Contact