Gauss code |
O1O2O3U4U3O5O4U6U2O6U1U5 |
R3 orbit |
{'O1O2O3U4U3O5O4U6U2O6U1U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U3O5U2U5O6O4U1U6 |
Gauss code of K* |
O1O2U1O3O4U3U2U5O6O5U4U6 |
Gauss code of -K* |
O1O2U3O4O3U5U1O6O5U6U4U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 0 1 0 1 -1],[ 1 0 1 1 0 1 0],[ 0 -1 0 1 -1 -1 0],[-1 -1 -1 0 -1 -1 -1],[ 0 0 1 1 0 1 -1],[-1 -1 1 1 -1 0 -1],[ 1 0 0 1 1 1 0]] |
Primitive based matrix |
[[ 0 1 1 0 0 -1 -1],[-1 0 1 1 -1 -1 -1],[-1 -1 0 -1 -1 -1 -1],[ 0 -1 1 0 -1 0 -1],[ 0 1 1 1 0 -1 0],[ 1 1 1 0 1 0 0],[ 1 1 1 1 0 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,0,0,1,1,-1,-1,1,1,1,1,1,1,1,1,0,1,1,0,0] |
Phi over symmetry |
[-1,-1,0,0,1,1,-1,-1,1,1,1,1,1,1,1,1,0,1,1,0,0] |
Phi of -K |
[-1,-1,0,0,1,1,0,0,1,1,1,1,0,1,1,-1,0,0,0,2,1] |
Phi of K* |
[-1,-1,0,0,1,1,-1,0,0,1,1,0,2,1,1,1,0,1,1,0,0] |
Phi of -K* |
[-1,-1,0,0,1,1,0,0,1,1,1,1,0,1,1,-1,-1,1,1,1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
2z^2+22z+37 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2+22w^2z+37w |
Inner characteristic polynomial |
t^6+12t^4+16t^2+1 |
Outer characteristic polynomial |
t^7+16t^5+36t^3+7t |
Flat arrow polynomial |
4*K1**3 - 8*K1**2 - 8*K1*K2 + K1 + 4*K2 + 3*K3 + 5 |
2-strand cable arrow polynomial |
-384*K1**6 - 320*K1**4*K2**2 + 1952*K1**4*K2 - 5568*K1**4 + 864*K1**3*K2*K3 + 32*K1**3*K3*K4 - 864*K1**3*K3 - 192*K1**2*K2**4 + 640*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 6784*K1**2*K2**2 - 512*K1**2*K2*K4 + 11752*K1**2*K2 - 864*K1**2*K3**2 - 32*K1**2*K3*K5 - 128*K1**2*K4**2 - 5368*K1**2 + 352*K1*K2**3*K3 - 1504*K1*K2**2*K3 - 128*K1*K2**2*K5 - 480*K1*K2*K3*K4 + 7776*K1*K2*K3 + 1640*K1*K3*K4 + 312*K1*K4*K5 - 32*K2**6 + 96*K2**4*K4 - 720*K2**4 - 32*K2**3*K6 - 288*K2**2*K3**2 - 128*K2**2*K4**2 + 1488*K2**2*K4 - 5210*K2**2 + 392*K2*K3*K5 + 104*K2*K4*K6 - 2340*K3**2 - 836*K4**2 - 148*K5**2 - 22*K6**2 + 5290 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {3, 5}, {2, 4}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {4}, {1, 3}, {2}], [{6}, {3, 5}, {2, 4}, {1}]] |
If K is slice |
False |