Gauss code |
O1O2O3U4U3O5O4U6U5O6U1U2 |
R3 orbit |
{'O1O2O3U4U3O5O4U6U5O6U1U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U2U3O4U5U4O6O5U1U6 |
Gauss code of K* |
O1O2U1O3O4U3U4U5O6O5U2U6 |
Gauss code of -K* |
O1O2U3O4O3U5U4O6O5U6U1U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 1 1 0 0 -1],[ 1 0 1 1 1 0 0],[-1 -1 0 1 -1 0 -2],[-1 -1 -1 0 -1 -1 -1],[ 0 -1 1 1 0 0 0],[ 0 0 0 1 0 0 0],[ 1 0 2 1 0 0 0]] |
Primitive based matrix |
[[ 0 1 1 0 0 -1 -1],[-1 0 1 0 -1 -1 -2],[-1 -1 0 -1 -1 -1 -1],[ 0 0 1 0 0 0 0],[ 0 1 1 0 0 -1 0],[ 1 1 1 0 1 0 0],[ 1 2 1 0 0 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,0,0,1,1,-1,0,1,1,2,1,1,1,1,0,0,0,1,0,0] |
Phi over symmetry |
[-1,-1,0,0,1,1,-1,0,0,1,1,0,1,0,1,0,1,0,1,1,0] |
Phi of -K |
[-1,-1,0,0,1,1,0,0,1,1,1,1,1,0,1,0,0,0,1,0,-1] |
Phi of K* |
[-1,-1,0,0,1,1,-1,0,0,1,1,0,1,0,1,0,1,0,1,1,0] |
Phi of -K* |
[-1,-1,0,0,1,1,0,0,0,1,2,0,1,1,1,0,1,0,1,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
5z^2+26z+33 |
Enhanced Jones-Krushkal polynomial |
5w^3z^2+26w^2z+33w |
Inner characteristic polynomial |
t^6+12t^4+15t^2+4 |
Outer characteristic polynomial |
t^7+16t^5+23t^3+8t |
Flat arrow polynomial |
8*K1**3 - 4*K1**2 - 8*K1*K2 - 2*K1 + 2*K2 + 2*K3 + 3 |
2-strand cable arrow polynomial |
-512*K1**6 - 1152*K1**4*K2**2 + 4224*K1**4*K2 - 9120*K1**4 + 1536*K1**3*K2*K3 - 1184*K1**3*K3 - 896*K1**2*K2**4 + 3776*K1**2*K2**3 + 640*K1**2*K2**2*K4 - 13632*K1**2*K2**2 - 1312*K1**2*K2*K4 + 13232*K1**2*K2 - 640*K1**2*K3**2 - 96*K1**2*K4**2 - 1008*K1**2 + 1152*K1*K2**3*K3 - 2112*K1*K2**2*K3 - 416*K1*K2**2*K5 - 480*K1*K2*K3*K4 + 8128*K1*K2*K3 + 816*K1*K3*K4 + 160*K1*K4*K5 - 192*K2**6 + 320*K2**4*K4 - 2032*K2**4 - 64*K2**3*K6 - 288*K2**2*K3**2 - 128*K2**2*K4**2 + 1616*K2**2*K4 - 2356*K2**2 + 224*K2*K3*K5 + 48*K2*K4*K6 - 1000*K3**2 - 284*K4**2 - 40*K5**2 - 4*K6**2 + 3074 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {3, 4}, {1, 2}]] |
If K is slice |
False |