| Gauss code | 
O1O2O3U4U5O6O4U1U3O5U2U6 | 
| R3 orbit | 
{'O1O2O3U4U5O6O4U1U3O5U2U6'} | 
| R3 orbit length | 
1 | 
| Gauss code of -K | 
O1O2O3U4U2O5U1U3O6O4U5U6 | 
| Gauss code of K* | 
O1O2U3O4O5U1U4U2O6O3U5U6 | 
| Gauss code of -K* | 
O1O2U3O4O5U6U1O3O6U4U2U5 | 
| Diagrammatic symmetry type | 
c | 
| Flat genus of the diagram | 
3 | 
| If K is checkerboard colorable | 
False | 
| If K is almost classical | 
False | 
| Based matrix from Gauss code | 
[[ 0 -2 0 1 0 0 1],[ 2 0 1 1 2 2 1],[ 0 -1 0 1 -1 0 0],[-1 -1 -1 0 -1 0 -1],[ 0 -2 1 1 0 -1 2],[ 0 -2 0 0 1 0 1],[-1 -1 0 1 -2 -1 0]] | 
| Primitive based matrix | 
[[ 0 1 1 0 0 0 -2],[-1 0 1 0 -1 -2 -1],[-1 -1 0 -1 0 -1 -1],[ 0 0 1 0 0 -1 -1],[ 0 1 0 0 0 1 -2],[ 0 2 1 1 -1 0 -2],[ 2 1 1 1 2 2 0]] | 
| If based matrix primitive | 
True | 
| Phi of primitive based matrix | 
[-1,-1,0,0,0,2,-1,0,1,2,1,1,0,1,1,0,1,1,-1,2,2] | 
| Phi over symmetry | 
[-2,0,0,0,1,1,0,0,1,2,2,-1,0,0,1,-1,-1,0,1,0,-1] | 
| Phi of -K | 
[-2,0,0,0,1,1,0,0,1,2,2,-1,0,0,1,-1,-1,0,1,0,-1] | 
| Phi of K* | 
[-1,-1,0,0,0,2,-1,0,0,1,2,-1,1,0,2,1,-1,0,0,1,0] | 
| Phi of -K* | 
[-2,0,0,0,1,1,1,2,2,1,1,-1,0,0,1,-1,2,1,1,0,1] | 
| Symmetry type of based matrix | 
c | 
| u-polynomial | 
t^2-2t | 
| Normalized Jones-Krushkal polynomial | 
z^2+22z+41 | 
| Enhanced Jones-Krushkal polynomial | 
w^3z^2+22w^2z+41w | 
| Inner characteristic polynomial | 
t^6+21t^4+59t^2 | 
| Outer characteristic polynomial | 
t^7+27t^5+88t^3+4t | 
| Flat arrow polynomial | 
4*K1**3 - 14*K1**2 - 8*K1*K2 + K1 + 7*K2 + 3*K3 + 8 | 
| 2-strand cable arrow polynomial | 
-128*K1**4*K2**2 + 1216*K1**4*K2 - 4624*K1**4 + 512*K1**3*K2*K3 - 1664*K1**3*K3 + 320*K1**2*K2**3 + 32*K1**2*K2**2*K4 - 5600*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 672*K1**2*K2*K4 + 12968*K1**2*K2 - 1296*K1**2*K3**2 - 32*K1**2*K3*K5 - 96*K1**2*K4**2 - 8952*K1**2 + 128*K1*K2**3*K3 - 768*K1*K2**2*K3 - 128*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 10144*K1*K2*K3 + 2224*K1*K3*K4 + 280*K1*K4*K5 - 32*K2**6 + 96*K2**4*K4 - 616*K2**4 - 32*K2**3*K6 - 320*K2**2*K3**2 - 128*K2**2*K4**2 + 1352*K2**2*K4 - 6954*K2**2 + 520*K2*K3*K5 + 104*K2*K4*K6 - 3576*K3**2 - 1042*K4**2 - 200*K5**2 - 22*K6**2 + 7272 | 
| Genus of based matrix | 
1 | 
| Fillings of based matrix | 
[[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {1, 5}, {2, 4}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {1, 2}]] | 
| If K is slice | 
False |