Gauss code |
O1O2O3O4O5U1O6U5U6U2U3U4 |
R3 orbit |
{'O1O2O3O4O5U1O6U5U6U2U3U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U2U3U4U6U1O6U5 |
Gauss code of K* |
O1O2O3O4O5U6U3U4U5U1O6U2 |
Gauss code of -K* |
O1O2O3O4O5U4O6U5U1U2U3U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -1 1 3 0 1],[ 4 0 2 3 4 1 1],[ 1 -2 0 1 2 -1 1],[-1 -3 -1 0 1 -1 1],[-3 -4 -2 -1 0 -1 1],[ 0 -1 1 1 1 0 1],[-1 -1 -1 -1 -1 -1 0]] |
Primitive based matrix |
[[ 0 3 1 1 0 -1 -4],[-3 0 1 -1 -1 -2 -4],[-1 -1 0 -1 -1 -1 -1],[-1 1 1 0 -1 -1 -3],[ 0 1 1 1 0 1 -1],[ 1 2 1 1 -1 0 -2],[ 4 4 1 3 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,-1,0,1,4,-1,1,1,2,4,1,1,1,1,1,1,3,-1,1,2] |
Phi over symmetry |
[-4,-1,0,1,1,3,1,3,2,4,3,2,1,1,2,0,0,2,-1,1,3] |
Phi of -K |
[-4,-1,0,1,1,3,1,3,2,4,3,2,1,1,2,0,0,2,-1,1,3] |
Phi of K* |
[-3,-1,-1,0,1,4,1,3,2,2,3,1,0,1,2,0,1,4,2,3,1] |
Phi of -K* |
[-4,-1,0,1,1,3,2,1,1,3,4,-1,1,1,2,1,1,1,-1,-1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^3-t |
Normalized Jones-Krushkal polynomial |
5z+11 |
Enhanced Jones-Krushkal polynomial |
-6w^4z^2+6w^3z^2-10w^3z+15w^2z+11w |
Inner characteristic polynomial |
t^6+44t^4+35t^2 |
Outer characteristic polynomial |
t^7+72t^5+137t^3+6t |
Flat arrow polynomial |
-8*K1**4 + 4*K1**3 + 4*K1**2*K2 + 4*K1**2 - 2*K1*K2 - 2*K1 + 1 |
2-strand cable arrow polynomial |
-336*K1**4 - 32*K1**3*K3 - 768*K1**2*K2**6 + 2304*K1**2*K2**5 - 4544*K1**2*K2**4 + 4128*K1**2*K2**3 - 4704*K1**2*K2**2 - 64*K1**2*K2*K4 + 3680*K1**2*K2 - 48*K1**2*K3**2 - 2528*K1**2 + 768*K1*K2**5*K3 - 1664*K1*K2**4*K3 + 3104*K1*K2**3*K3 + 32*K1*K2**2*K3*K4 - 704*K1*K2**2*K3 + 2672*K1*K2*K3 + 176*K1*K3*K4 - 128*K2**8 + 128*K2**6*K4 - 1888*K2**6 - 448*K2**4*K3**2 - 32*K2**4*K4**2 + 1216*K2**4*K4 - 1200*K2**4 + 128*K2**3*K3*K5 - 576*K2**2*K3**2 - 24*K2**2*K4**2 + 624*K2**2*K4 - 280*K2**2 + 64*K2*K3*K5 - 632*K3**2 - 96*K4**2 - 8*K5**2 + 1678 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {2, 5}, {1, 4}]] |
If K is slice |
False |