Gauss code |
O1O2O3U4U2O5O6U3U1O4U5U6 |
R3 orbit |
{'O1O2O3U4U2O5O6U3U1O4U5U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U5O6U3U1O4O5U2U6 |
Gauss code of K* |
O1O2U3O4O5U2U6U1O3O6U4U5 |
Gauss code of -K* |
O1O2U3O4O5U1U2O6O3U5U6U4 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 0 0 -1 0 2],[ 1 0 -1 1 -1 1 2],[ 0 1 0 1 -1 0 0],[ 0 -1 -1 0 0 0 1],[ 1 1 1 0 0 0 1],[ 0 -1 0 0 0 0 1],[-2 -2 0 -1 -1 -1 0]] |
Primitive based matrix |
[[ 0 2 0 0 0 -1 -1],[-2 0 0 -1 -1 -1 -2],[ 0 0 0 1 0 -1 1],[ 0 1 -1 0 0 0 -1],[ 0 1 0 0 0 0 -1],[ 1 1 1 0 0 0 1],[ 1 2 -1 1 1 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,0,0,0,1,1,0,1,1,1,2,-1,0,1,-1,0,0,1,0,1,-1] |
Phi over symmetry |
[-2,0,0,0,1,1,0,1,1,1,2,-1,0,1,-1,0,0,1,0,1,-1] |
Phi of -K |
[-1,-1,0,0,0,2,-1,0,1,1,2,2,0,0,1,-1,0,2,0,1,1] |
Phi of K* |
[-2,0,0,0,1,1,1,1,2,1,2,0,-1,0,1,0,0,1,2,0,-1] |
Phi of -K* |
[-1,-1,0,0,0,2,-1,-1,1,1,2,1,0,0,1,0,1,0,0,1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^2+2t |
Normalized Jones-Krushkal polynomial |
6z^2+27z+31 |
Enhanced Jones-Krushkal polynomial |
6w^3z^2+27w^2z+31w |
Inner characteristic polynomial |
t^6+13t^4+27t^2+4 |
Outer characteristic polynomial |
t^7+19t^5+52t^3+8t |
Flat arrow polynomial |
8*K1**3 - 10*K1**2 - 8*K1*K2 - 2*K1 + 5*K2 + 2*K3 + 6 |
2-strand cable arrow polynomial |
128*K1**4*K2**3 - 832*K1**4*K2**2 + 1120*K1**4*K2 - 2960*K1**4 - 128*K1**3*K2**2*K3 + 1088*K1**3*K2*K3 - 672*K1**3*K3 - 512*K1**2*K2**4 + 2464*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 10912*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 896*K1**2*K2*K4 + 12456*K1**2*K2 - 400*K1**2*K3**2 - 6904*K1**2 + 1024*K1*K2**3*K3 - 1888*K1*K2**2*K3 - 416*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 9864*K1*K2*K3 + 680*K1*K3*K4 + 64*K1*K4*K5 - 64*K2**6 + 192*K2**4*K4 - 2664*K2**4 - 64*K2**3*K6 - 576*K2**2*K3**2 - 128*K2**2*K4**2 + 2472*K2**2*K4 - 4708*K2**2 + 464*K2*K3*K5 + 80*K2*K4*K6 - 2192*K3**2 - 498*K4**2 - 96*K5**2 - 12*K6**2 + 5392 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {5}, {2, 3}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {2, 3}]] |
If K is slice |
False |