Min(phi) over symmetries of the knot is: [-1,-1,0,0,1,1,-1,0,0,1,1,0,1,1,1,1,0,0,0,1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1796', '6.1872'] |
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063'] |
Outer characteristic polynomial of the knot is: t^7+16t^5+22t^3+4t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1796'] |
2-strand cable arrow polynomial of the knot is: -448*K1**4*K2**2 + 2656*K1**4*K2 - 5840*K1**4 + 704*K1**3*K2*K3 - 1088*K1**3*K3 + 1280*K1**2*K2**3 - 7616*K1**2*K2**2 - 672*K1**2*K2*K4 + 9832*K1**2*K2 - 464*K1**2*K3**2 - 2984*K1**2 - 416*K1*K2**2*K3 + 5640*K1*K2*K3 + 384*K1*K3*K4 - 688*K2**4 + 528*K2**2*K4 - 2928*K2**2 - 968*K3**2 - 116*K4**2 + 3202 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1796'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16531', 'vk6.16622', 'vk6.17520', 'vk6.17575', 'vk6.18868', 'vk6.18944', 'vk6.19208', 'vk6.19503', 'vk6.23058', 'vk6.24121', 'vk6.25496', 'vk6.25569', 'vk6.26015', 'vk6.26401', 'vk6.34933', 'vk6.35047', 'vk6.36301', 'vk6.36368', 'vk6.37593', 'vk6.37680', 'vk6.42509', 'vk6.42618', 'vk6.43480', 'vk6.44596', 'vk6.54759', 'vk6.54854', 'vk6.56447', 'vk6.56568', 'vk6.59285', 'vk6.60181', 'vk6.66101', 'vk6.66141'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U4U2O5O6U3U6O4U1U5 |
R3 orbit | {'O1O2O3U4U2O5O6U3U6O4U1U5'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U4U3O5U6U1O6O4U2U5 |
Gauss code of K* | O1O2U3O4O5U4U6U1O3O6U5U2 |
Gauss code of -K* | O1O2U3O4O5U4U1O6O3U5U6U2 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 0 0 -1 1 1],[ 1 0 0 1 -1 1 1],[ 0 0 0 1 -1 0 1],[ 0 -1 -1 0 -1 1 1],[ 1 1 1 1 0 1 1],[-1 -1 0 -1 -1 0 0],[-1 -1 -1 -1 -1 0 0]] |
Primitive based matrix | [[ 0 1 1 0 0 -1 -1],[-1 0 0 0 -1 -1 -1],[-1 0 0 -1 -1 -1 -1],[ 0 0 1 0 1 0 -1],[ 0 1 1 -1 0 -1 -1],[ 1 1 1 0 1 0 -1],[ 1 1 1 1 1 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-1,-1,0,0,1,1,0,0,1,1,1,1,1,1,1,-1,0,1,1,1,1] |
Phi over symmetry | [-1,-1,0,0,1,1,-1,0,0,1,1,0,1,1,1,1,0,0,0,1,0] |
Phi of -K | [-1,-1,0,0,1,1,-1,0,0,1,1,0,1,1,1,1,0,0,0,1,0] |
Phi of K* | [-1,-1,0,0,1,1,0,0,0,1,1,0,1,1,1,-1,0,0,0,1,1] |
Phi of -K* | [-1,-1,0,0,1,1,-1,0,1,1,1,1,1,1,1,1,0,1,1,1,0] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 4z^2+25z+35 |
Enhanced Jones-Krushkal polynomial | 4w^3z^2+25w^2z+35w |
Inner characteristic polynomial | t^6+12t^4+12t^2+1 |
Outer characteristic polynomial | t^7+16t^5+22t^3+4t |
Flat arrow polynomial | -8*K1**2 + 4*K2 + 5 |
2-strand cable arrow polynomial | -448*K1**4*K2**2 + 2656*K1**4*K2 - 5840*K1**4 + 704*K1**3*K2*K3 - 1088*K1**3*K3 + 1280*K1**2*K2**3 - 7616*K1**2*K2**2 - 672*K1**2*K2*K4 + 9832*K1**2*K2 - 464*K1**2*K3**2 - 2984*K1**2 - 416*K1*K2**2*K3 + 5640*K1*K2*K3 + 384*K1*K3*K4 - 688*K2**4 + 528*K2**2*K4 - 2928*K2**2 - 968*K3**2 - 116*K4**2 + 3202 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {4, 5}, {2, 3}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice | False |