Min(phi) over symmetries of the knot is: [-4,-1,0,1,2,2,1,3,4,2,3,2,1,1,2,0,1,1,2,2,0] |
Flat knots (up to 7 crossings) with same phi are :['6.180'] |
Arrow polynomial of the knot is: -2*K1**2 - 4*K1*K2 - 2*K1*K3 + 2*K1 + 2*K2 + 2*K3 + K4 + 2 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.180', '6.263', '6.295', '6.317', '6.350', '6.473', '6.504'] |
Outer characteristic polynomial of the knot is: t^7+69t^5+140t^3+9t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.180'] |
2-strand cable arrow polynomial of the knot is: 32*K1**4*K2 - 464*K1**4 + 448*K1**3*K2*K3 - 736*K1**3*K3 - 256*K1**2*K2**2*K3**2 - 1808*K1**2*K2**2 + 512*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 160*K1**2*K2*K4 + 5192*K1**2*K2 - 1712*K1**2*K3**2 - 32*K1**2*K3*K5 - 5412*K1**2 + 480*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 1952*K1*K2**2*K3 - 128*K1*K2**2*K5 - 736*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 7352*K1*K2*K3 + 2408*K1*K3*K4 + 112*K1*K4*K5 + 32*K1*K5*K6 - 520*K2**4 - 32*K2**3*K6 - 1440*K2**2*K3**2 - 48*K2**2*K4**2 + 1600*K2**2*K4 - 16*K2**2*K5**2 - 8*K2**2*K6**2 - 4432*K2**2 + 1240*K2*K3*K5 + 104*K2*K4*K6 + 24*K2*K5*K7 + 8*K2*K6*K8 - 192*K3**4 + 144*K3**2*K6 - 2840*K3**2 + 8*K3*K4*K7 - 976*K4**2 - 216*K5**2 - 64*K6**2 - 12*K7**2 - 2*K8**2 + 4368 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.180'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4658', 'vk6.4945', 'vk6.6108', 'vk6.6595', 'vk6.8117', 'vk6.8519', 'vk6.9507', 'vk6.9862', 'vk6.20378', 'vk6.21721', 'vk6.27694', 'vk6.29240', 'vk6.39130', 'vk6.41386', 'vk6.45870', 'vk6.47533', 'vk6.48698', 'vk6.48901', 'vk6.49458', 'vk6.49677', 'vk6.50714', 'vk6.50913', 'vk6.51197', 'vk6.51398', 'vk6.57239', 'vk6.58466', 'vk6.61861', 'vk6.62998', 'vk6.66858', 'vk6.67728', 'vk6.69486', 'vk6.70210'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U1O6U5U6U2U4U3 |
R3 orbit | {'O1O2O3O4O5U1O6U5U6U2U4U3'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4O5U3U2U4U6U1O6U5 |
Gauss code of K* | O1O2O3O4O5U6U3U5U4U1O6U2 |
Gauss code of -K* | O1O2O3O4O5U4O6U5U2U1U3U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -4 -1 2 2 0 1],[ 4 0 2 4 3 1 1],[ 1 -2 0 2 1 -1 1],[-2 -4 -2 0 0 -1 1],[-2 -3 -1 0 0 -1 1],[ 0 -1 1 1 1 0 1],[-1 -1 -1 -1 -1 -1 0]] |
Primitive based matrix | [[ 0 2 2 1 0 -1 -4],[-2 0 0 1 -1 -1 -3],[-2 0 0 1 -1 -2 -4],[-1 -1 -1 0 -1 -1 -1],[ 0 1 1 1 0 1 -1],[ 1 1 2 1 -1 0 -2],[ 4 3 4 1 1 2 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-2,-1,0,1,4,0,-1,1,1,3,-1,1,2,4,1,1,1,-1,1,2] |
Phi over symmetry | [-4,-1,0,1,2,2,1,3,4,2,3,2,1,1,2,0,1,1,2,2,0] |
Phi of -K | [-4,-1,0,1,2,2,1,3,4,2,3,2,1,1,2,0,1,1,2,2,0] |
Phi of K* | [-2,-2,-1,0,1,4,0,2,1,1,2,2,1,2,3,0,1,4,2,3,1] |
Phi of -K* | [-4,-1,0,1,2,2,2,1,1,3,4,-1,1,1,2,1,1,1,-1,-1,0] |
Symmetry type of based matrix | c |
u-polynomial | t^4-2t^2 |
Normalized Jones-Krushkal polynomial | 5z^2+24z+29 |
Enhanced Jones-Krushkal polynomial | 5w^3z^2-2w^3z+26w^2z+29w |
Inner characteristic polynomial | t^6+43t^4+38t^2 |
Outer characteristic polynomial | t^7+69t^5+140t^3+9t |
Flat arrow polynomial | -2*K1**2 - 4*K1*K2 - 2*K1*K3 + 2*K1 + 2*K2 + 2*K3 + K4 + 2 |
2-strand cable arrow polynomial | 32*K1**4*K2 - 464*K1**4 + 448*K1**3*K2*K3 - 736*K1**3*K3 - 256*K1**2*K2**2*K3**2 - 1808*K1**2*K2**2 + 512*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 160*K1**2*K2*K4 + 5192*K1**2*K2 - 1712*K1**2*K3**2 - 32*K1**2*K3*K5 - 5412*K1**2 + 480*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 1952*K1*K2**2*K3 - 128*K1*K2**2*K5 - 736*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 7352*K1*K2*K3 + 2408*K1*K3*K4 + 112*K1*K4*K5 + 32*K1*K5*K6 - 520*K2**4 - 32*K2**3*K6 - 1440*K2**2*K3**2 - 48*K2**2*K4**2 + 1600*K2**2*K4 - 16*K2**2*K5**2 - 8*K2**2*K6**2 - 4432*K2**2 + 1240*K2*K3*K5 + 104*K2*K4*K6 + 24*K2*K5*K7 + 8*K2*K6*K8 - 192*K3**4 + 144*K3**2*K6 - 2840*K3**2 + 8*K3*K4*K7 - 976*K4**2 - 216*K5**2 - 64*K6**2 - 12*K7**2 - 2*K8**2 + 4368 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {2, 3}, {1}]] |
If K is slice | False |