Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1805

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,-1,1,1,1,2,0,0,1,1,1,0,1,1,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1805']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.361', '6.460', '6.555', '6.651', '6.753', '6.782', '6.1029', '6.1197', '6.1200', '6.1232', '6.1236', '6.1278', '6.1281', '6.1343', '6.1380', '6.1385', '6.1389', '6.1484', '6.1492', '6.1493', '6.1527', '6.1533', '6.1550', '6.1553', '6.1557', '6.1576', '6.1578', '6.1582', '6.1586', '6.1674', '6.1698', '6.1754', '6.1759', '6.1775', '6.1791', '6.1798', '6.1800', '6.1805', '6.1822', '6.1826', '6.1839', '6.1844', '6.1845']
Outer characteristic polynomial of the knot is: t^7+22t^5+54t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1702', '6.1805']
2-strand cable arrow polynomial of the knot is: 256*K1**4*K2**3 - 640*K1**4*K2**2 + 1792*K1**4*K2 - 3376*K1**4 - 384*K1**3*K2**2*K3 + 1216*K1**3*K2*K3 + 32*K1**3*K3*K4 - 800*K1**3*K3 - 448*K1**2*K2**4 + 1216*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 6336*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 352*K1**2*K2*K4 + 9400*K1**2*K2 - 784*K1**2*K3**2 - 128*K1**2*K4**2 - 5924*K1**2 + 768*K1*K2**3*K3 - 1728*K1*K2**2*K3 - 352*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 7352*K1*K2*K3 + 1168*K1*K3*K4 + 232*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1096*K2**4 - 32*K2**3*K6 - 304*K2**2*K3**2 - 16*K2**2*K4**2 + 1480*K2**2*K4 - 4742*K2**2 + 272*K2*K3*K5 + 16*K2*K4*K6 - 2284*K3**2 - 634*K4**2 - 120*K5**2 - 2*K6**2 + 4992
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1805']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16543', 'vk6.16634', 'vk6.17524', 'vk6.17579', 'vk6.18859', 'vk6.18938', 'vk6.19200', 'vk6.19494', 'vk6.23066', 'vk6.24123', 'vk6.25489', 'vk6.25564', 'vk6.26010', 'vk6.26394', 'vk6.34937', 'vk6.35053', 'vk6.36311', 'vk6.36382', 'vk6.37582', 'vk6.37674', 'vk6.42511', 'vk6.42620', 'vk6.43488', 'vk6.44591', 'vk6.54789', 'vk6.54875', 'vk6.56427', 'vk6.56549', 'vk6.59299', 'vk6.60195', 'vk6.66084', 'vk6.66130']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4U3O5O6U2U5O4U1U6
R3 orbit {'O1O2O3U4U3O5O6U2U5O4U1U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U3O5U6U2O4O6U1U5
Gauss code of K* O1O2U3O4O5U4U1U6O3O6U2U5
Gauss code of -K* O1O2U3O4O5U1U4O6O3U6U5U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 1 -1 0 2],[ 1 0 0 1 -1 1 2],[ 1 0 0 0 -1 1 1],[-1 -1 0 0 -1 0 -1],[ 1 1 1 1 0 0 1],[ 0 -1 -1 0 0 0 1],[-2 -2 -1 1 -1 -1 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 1 -1 -1 -1 -2],[-1 -1 0 0 0 -1 -1],[ 0 1 0 0 -1 0 -1],[ 1 1 0 1 0 -1 0],[ 1 1 1 0 1 0 1],[ 1 2 1 1 0 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,-1,1,1,1,2,0,0,1,1,1,0,1,1,0,-1]
Phi over symmetry [-2,-1,0,1,1,1,-1,1,1,1,2,0,0,1,1,1,0,1,1,0,-1]
Phi of -K [-1,-1,-1,0,1,2,-1,-1,1,1,2,0,0,1,1,0,2,2,1,1,2]
Phi of K* [-2,-1,0,1,1,1,2,1,1,2,2,1,1,1,2,0,1,0,-1,0,1]
Phi of -K* [-1,-1,-1,0,1,2,-1,0,1,0,1,1,0,1,1,1,1,2,0,1,-1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 4z^2+25z+35
Enhanced Jones-Krushkal polynomial 4w^3z^2+25w^2z+35w
Inner characteristic polynomial t^6+14t^4+29t^2+1
Outer characteristic polynomial t^7+22t^5+54t^3+4t
Flat arrow polynomial 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial 256*K1**4*K2**3 - 640*K1**4*K2**2 + 1792*K1**4*K2 - 3376*K1**4 - 384*K1**3*K2**2*K3 + 1216*K1**3*K2*K3 + 32*K1**3*K3*K4 - 800*K1**3*K3 - 448*K1**2*K2**4 + 1216*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 6336*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 352*K1**2*K2*K4 + 9400*K1**2*K2 - 784*K1**2*K3**2 - 128*K1**2*K4**2 - 5924*K1**2 + 768*K1*K2**3*K3 - 1728*K1*K2**2*K3 - 352*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 7352*K1*K2*K3 + 1168*K1*K3*K4 + 232*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1096*K2**4 - 32*K2**3*K6 - 304*K2**2*K3**2 - 16*K2**2*K4**2 + 1480*K2**2*K4 - 4742*K2**2 + 272*K2*K3*K5 + 16*K2*K4*K6 - 2284*K3**2 - 634*K4**2 - 120*K5**2 - 2*K6**2 + 4992
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {2, 4}, {1, 3}]]
If K is slice False
Contact